A302009 Number of nX7 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.
64, 8192, 772272, 75450768, 7350348800, 716213306576, 69786476414080, 6799869079320928, 662567007297568064, 64559337205664347760, 6290545670866971762128, 612939453077470915120704
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..1..1..1. .0..0..0..0..1..1..1. .0..0..0..0..1..1..1 ..0..0..1..0..0..0..0. .0..0..1..0..0..0..1. .0..0..1..0..0..0..1 ..0..0..0..1..1..1..1. .0..0..0..1..0..0..1. .0..0..0..1..0..1..0 ..0..0..1..0..0..0..1. .0..0..1..0..1..1..0. .0..0..1..1..1..0..1 ..0..0..0..0..1..0..1. .0..0..0..1..0..1..1. .0..0..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302010.
Formula
Empirical: a(n) = 85*a(n-1) +1213*a(n-2) +405*a(n-3) -48433*a(n-4) -99541*a(n-5) +739091*a(n-6) +1518593*a(n-7) -5898671*a(n-8) -5217125*a(n-9) +25830080*a(n-10) -16620026*a(n-11) -10284072*a(n-12) +13380888*a(n-13) -2391872*a(n-14) -1786496*a(n-15) +844032*a(n-16) -105472*a(n-17) for n>19
Comments