cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A302005 Number of n X n 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 240, 25808, 9989376, 13918667808, 69786476414080, 1259406594247832896, 81801738558534434812512, 19123141293346274424868082896, 16090014430301966976090685132636800
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Diagonal of A302010.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..0. .0..0..0..1..0. .0..0..1..0..0. .0..0..0..1..0
..0..0..1..1..1. .1..0..1..1..1. .0..0..0..0..1. .1..1..0..0..1
..0..1..0..0..1. .0..0..1..0..1. .0..1..0..0..0. .0..1..0..0..1
..1..1..0..0..0. .0..1..0..0..1. .0..0..1..1..1. .1..1..1..1..1
		

Crossrefs

Cf. A302010.

A302006 Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1808, 25808, 368144, 5251712, 74917424, 1068722240, 15245681888, 217484775440, 3102493407248, 44258111045072, 631356826964288, 9006517303652528, 128480995970256128, 1832824583461859168
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Column 4 of A302010.

Examples

			Some solutions for n=5
..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0
..1..0..1..0. .0..1..1..0. .1..1..0..0. .1..1..0..0. .1..1..1..1
..0..0..1..0. .0..1..1..0. .1..1..0..0. .1..0..1..1. .1..0..1..1
..0..0..1..0. .0..1..0..0. .1..0..1..1. .0..0..1..1. .0..0..0..1
..0..1..0..0. .1..1..0..0. .1..1..1..1. .0..1..0..0. .1..1..1..0
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 13*a(n-1) +18*a(n-2) +a(n-3) -4*a(n-4)

A302007 Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 13616, 369040, 9989376, 270422672, 7320574992, 198174358400, 5364752820144, 145228540660944, 3931463336250816, 106428143490485072, 2881102723859806480, 77993965065966629248, 2111364699472345059888
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Column 5 of A302010.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..1..1..0. .0..0..1..0..0. .0..0..1..1..0
..1..1..1..0..1. .1..0..1..0..1. .0..1..1..0..1. .0..1..0..1..1
..0..1..0..0..1. .1..0..1..1..1. .1..1..1..0..0. .1..1..0..0..0
..0..0..0..0..1. .0..1..0..0..0. .0..1..0..0..0. .0..1..0..1..0
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 24*a(n-1) +82*a(n-2) +34*a(n-3) -90*a(n-4) -40*a(n-5) +37*a(n-6)

A302008 Number of nX6 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 102544, 5276816, 270990144, 13918667808, 714887543376, 36717919842624, 1885898831169344, 96863178142358672, 4975068186720184080, 255528508742343929504, 13124406807998548541168, 674093293580517672325808
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Column 6 of A302010.

Examples

			Some solutions for n=5
..0..0..0..1..1..0. .0..0..0..1..1..0. .0..0..0..0..1..0. .0..0..0..0..0..1
..0..0..1..1..1..0. .0..0..1..1..0..0. .0..0..1..1..0..0. .0..0..1..0..1..1
..0..0..0..1..0..0. .0..0..1..1..0..1. .0..0..0..1..1..1. .0..0..1..1..0..1
..0..0..1..0..1..1. .0..0..1..1..0..0. .0..0..1..1..0..0. .0..0..0..0..1..1
..0..0..1..1..1..0. .0..0..0..1..1..1. .0..0..0..0..0..1. .0..0..1..1..0..1
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 45*a(n-1) +324*a(n-2) +190*a(n-3) -2434*a(n-4) -3156*a(n-5) +5467*a(n-6) +5122*a(n-7) -6753*a(n-8) +1356*a(n-9) -16*a(n-10) for n>12

A302009 Number of nX7 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 772272, 75450768, 7350348800, 716213306576, 69786476414080, 6799869079320928, 662567007297568064, 64559337205664347760, 6290545670866971762128, 612939453077470915120704
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Column 7 of A302010.

Examples

			Some solutions for n=5
..0..0..0..0..1..1..1. .0..0..0..0..1..1..1. .0..0..0..0..1..1..1
..0..0..1..0..0..0..0. .0..0..1..0..0..0..1. .0..0..1..0..0..0..1
..0..0..0..1..1..1..1. .0..0..0..1..0..0..1. .0..0..0..1..0..1..0
..0..0..1..0..0..0..1. .0..0..1..0..1..1..0. .0..0..1..1..1..0..1
..0..0..0..0..1..0..1. .0..0..0..1..0..1..1. .0..0..0..0..0..0..0
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 85*a(n-1) +1213*a(n-2) +405*a(n-3) -48433*a(n-4) -99541*a(n-5) +739091*a(n-6) +1518593*a(n-7) -5898671*a(n-8) -5217125*a(n-9) +25830080*a(n-10) -16620026*a(n-11) -10284072*a(n-12) +13380888*a(n-13) -2391872*a(n-14) -1786496*a(n-15) +844032*a(n-16) -105472*a(n-17) for n>19

A302011 Number of 4 X n 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1808, 25808, 369040, 5276816, 75450768, 1078839952, 15425887120, 220568403088, 3153816694160, 45095125134992, 644796609413008, 9219680980164752, 131828418659815824, 1884960228421653136
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Row 4 of A302010.

Examples

			Some solutions for n=5
..0..0..1..0..0. .0..0..1..0..0. .0..1..0..0..1. .0..1..1..1..0
..0..1..0..1..1. .0..0..1..1..0. .0..1..0..0..0. .0..1..0..1..0
..0..1..0..1..1. .0..0..0..0..1. .0..0..1..0..1. .0..1..1..1..1
..1..0..1..0..1. .0..1..0..0..0. .0..0..1..0..0. .0..0..1..0..0
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 13*a(n-1) +20*a(n-2) -16*a(n-3) -64*a(n-4) for n > 6.

A302012 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 13616, 368144, 9989376, 270990144, 7350348800, 199375282176, 5407964088576, 146688598302720, 3978862338503680, 107924853732951040, 2927413180587028480, 79404767608300756992, 2153818654894959054848
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Row 5 of A302010.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..1..0..1. .0..0..1..0..0. .0..0..1..1..0. .0..0..1..0..1
..1..1..0..0..1. .0..1..0..1..0. .0..0..0..1..1. .1..0..0..0..0
..0..0..1..0..1. .1..1..0..0..1. .0..1..1..0..1. .0..1..0..0..1
..0..1..0..0..1. .0..1..1..0..0. .0..0..1..1..0. .0..0..1..1..0
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 24*a(n-1) +100*a(n-2) -348*a(n-3) -1856*a(n-4) +1536*a(n-5) +14848*a(n-6) +2048*a(n-7) -65024*a(n-8) -40960*a(n-9) +139264*a(n-10) +102400*a(n-11) -147456*a(n-12) for n>15

A302013 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 102544, 5251712, 270422672, 13918667808, 716213306576, 36855939211024, 1896586295277648, 97597270837054224, 5022300954243143056, 258444799126059320912, 13299424846991854883856, 684380966051831909223120
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Row 6 of A302010.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..1
..1..1..1..1..1. .1..1..1..0..0. .1..1..0..0..0. .1..1..0..0..0
..0..0..1..0..1. .0..0..1..1..0. .0..0..0..0..1. .0..0..1..1..0
..0..0..0..1..0. .0..0..0..0..0. .1..1..0..1..1. .0..1..1..0..1
..0..0..0..0..0. .0..0..1..0..1. .1..1..1..0..0. .1..1..1..1..1
		

Crossrefs

Cf. A302010.

Formula

Empirical: a(n) = 45*a(n-1) +440*a(n-2) -4668*a(n-3) -49576*a(n-4) +197580*a(n-5) +2795936*a(n-6) -3781008*a(n-7) -97523056*a(n-8) -6960896*a(n-9) +2313353024*a(n-10) +2353946368*a(n-11) -38952213248*a(n-12) -68946156544*a(n-13) +469674602496*a(n-14) +1166484488192*a(n-15) -4011898028032*a(n-16) -13000611725312*a(n-17) +23803001700352*a(n-18) +96037532336128*a(n-19) -96814282047488*a(n-20) -437118374510592*a(n-21) +274926149828608*a(n-22) +925486406434816*a(n-23) -288890606845952*a(n-24) -614211193405440*a(n-25) +209461260058624*a(n-26) +342302451040256*a(n-27) -267232865157120*a(n-28) -144860656959488*a(n-29) +79989470920704*a(n-30) +56075093016576*a(n-31) -15393162788864*a(n-32) for n>36

A302014 Number of 7Xn 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 772272, 74917424, 7320574992, 714887543376, 69786476414080, 6812969999327424, 665123348184876224, 64933307877775254592, 6339175601773524948352, 618868043706883764304384
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2018

Keywords

Comments

Row 7 of A302010.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..1..1..1..0..0. .1..1..1..0..0. .1..1..1..0..0. .1..1..1..0..0
..0..0..1..0..0. .0..0..0..1..1. .0..0..0..1..0. .0..0..0..0..0
..0..1..0..1..1. .1..1..0..1..1. .0..1..1..0..0. .1..1..1..1..1
..0..0..1..1..0. .0..1..1..0..1. .1..1..1..0..1. .0..1..1..0..0
..1..0..0..1..0. .1..1..1..1..1. .0..0..0..0..1. .0..0..0..1..1
		

Crossrefs

Cf. A302010.

Formula

Empirical recurrence of order 78 (see link above)
Showing 1-9 of 9 results.