This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302015 #6 Feb 16 2025 08:33:53 %S A302015 1,1,0,0,1,0,-1,0,1,0,-1,1,1,-2,-1,2,0,-2,2,3,-3,-3,4,0,-7,3,9,-5,-7, %T A302015 10,4,-17,-1,21,-7,-21,21,19,-36,-13,47,-5,-56,36,64,-69,-54,104,15, %U A302015 -147,41,177,-115,-168,221,116,-344,-15,442,-159,-481,422,443,-736,-280,1034,-90,-1276,681 %N A302015 Expansion of 1/(1 - x/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...))))))), a continued fraction. %H A302015 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A302015 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a> %F A302015 G.f.: 1/(1 - x*Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4))/((1 - x^(5*k-2))*(1 - x^(5*k-3)))). %F A302015 a(0) = 1; a(n) = Sum_{k=1..n} A007325(k-1)*a(n-k). %t A302015 nmax = 68; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}])), {x, 0, nmax}], x] %t A302015 nmax = 68; CoefficientList[Series[1/(1 - x QPochhammer[x, x^5] QPochhammer[x^4, x^5]/(QPochhammer[x^2, x^5] QPochhammer[x^3, x^5])), {x, 0, nmax}], x] %Y A302015 Antidiagonal sums of A286509. %Y A302015 Cf. A007325, A167750, A302016. %K A302015 sign %O A302015 0,14 %A A302015 _Ilya Gutkovskiy_, Mar 30 2018