This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302017 #8 Feb 16 2025 08:33:53 %S A302017 1,1,2,3,6,11,21,39,73,137,257,482,903,1693,3173,5948,11149,20899, %T A302017 39174,73430,137641,258002,483614,906513,1699219,3185111,5970352, %U A302017 11191163,20977346,39321116,73705711,138158128,258971363,485430483,909918190,1705601814,3197075934,5992778881,11233201667 %N A302017 Expansion of 1/(1 - x*Product_{k>=1} (1 + x^(2*k-1))). %H A302017 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A302017 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Self-ConjugatePartition.html">Self-Conjugate Partition</a> %F A302017 G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + (-x)^k)). %F A302017 a(0) = 1; a(n) = Sum_{k=1..n} A000700(k-1)*a(n-k). %F A302017 a(n) ~ c / r^n, where r = 0.5334880525001986092393688937248506539793821912... is the root of the equation 1 + r - r^2 * QPochhammer(-1/r, r^2) = 0 and c = 0.48000092330632206397886602198643227268597451507794232644772186731542555975... = (2*(1 + r)*Log[r])/(2*(2 + r)*Log[r] + (1 + r)*Log[1 - r^2] + (1 + r) * QPolyGamma[Log[-1/r] / Log[r^2], r^2] + 4*r^4*Log[r] * Derivative[0,1][QPochhammer][-1/r, r^2]). - _Vaclav Kotesovec_, Mar 31 2018 %t A302017 nmax = 38; CoefficientList[Series[1/(1 - x Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x] %t A302017 nmax = 38; CoefficientList[Series[1/(1 - x QPochhammer[x^2]^2/(QPochhammer[x] QPochhammer[x^4])), {x, 0, nmax}], x] %Y A302017 Antidiagonal sums of absolute values of A286352. %Y A302017 Cf. A000700, A299106, A299208. %K A302017 nonn %O A302017 0,3 %A A302017 _Ilya Gutkovskiy_, Mar 30 2018