cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302018 Expansion of 1/(1 - x*(1 + theta_3(x))/2), where theta_3() is the Jacobi theta function.

This page as a plain text file.
%I A302018 #7 Feb 16 2025 08:33:53
%S A302018 1,1,2,3,5,9,15,26,44,75,129,220,377,644,1101,1883,3219,5506,9414,
%T A302018 16098,27527,47069,80488,137630,235343,402427,688134,1176685,2012085,
%U A302018 3440591,5883279,10060183,17202533,29415676,50299693,86010564,147074801,251492331,430042340,735356089,1257431006
%N A302018 Expansion of 1/(1 - x*(1 + theta_3(x))/2), where theta_3() is the Jacobi theta function.
%H A302018 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A302018 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%H A302018 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%F A302018 G.f.: 1/(1 - x*Sum_{k>=0} x^(k^2)).
%F A302018 a(0) = 1; a(n) = Sum_{k=1..n} A010052(k-1)*a(n-k).
%t A302018 nmax = 40; CoefficientList[Series[1/(1 - x (1 + EllipticTheta[3, 0, x])/2), {x, 0, nmax}], x]
%t A302018 nmax = 40; CoefficientList[Series[1/(1 - x Sum[x^k^2, {k, 0, nmax}]), {x, 0, nmax}], x]
%Y A302018 Antidiagonal sums of A045847.
%Y A302018 Cf. A010052, A032803, A181649, A302019.
%K A302018 nonn
%O A302018 0,3
%A A302018 _Ilya Gutkovskiy_, Mar 30 2018