cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302044 A028234 analog for factorization process based on the sieve of Eratosthenes (A083221).

This page as a plain text file.
%I A302044 #12 Apr 05 2018 20:33:59
%S A302044 1,1,1,1,1,3,1,1,1,5,1,3,1,7,5,1,1,9,1,5,1,11,1,3,1,13,7,7,1,15,1,1,5,
%T A302044 17,7,9,1,19,11,5,1,21,1,11,1,23,1,3,1,25,25,13,1,27,1,7,7,29,1,15,1,
%U A302044 31,13,1,11,33,1,17,5,35,1,9,1,37,17,19,11,39,1,5,11,41,1,21,7,43,35,11,1,45,1,23,1,47,13,3,1,49,19,25,1,51,1,13,25
%N A302044 A028234 analog for factorization process based on the sieve of Eratosthenes (A083221).
%C A302044 Iterating n, a(n), a(a(n)), a(a(a(n))), ..., until 1 is reached, and taking the smallest prime factor (A020639) of each term gives a sequence of distinct primes in ascending order, while applying A302045 to the same terms gives the corresponding exponents (multiplicities) of those primes. Permutation pair A250245/A250246 maps between this non-standard prime factorization and the ordinary factorization of n. See also comments and examples in A302042.
%H A302044 Antti Karttunen, <a href="/A302044/b302044.txt">Table of n, a(n) for n = 1..65537</a>
%H A302044 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%F A302044 For n > 1, a(n) = A250469^(r)(A000265(A078898(n))), where r = A055396(n)-1 and A250469^(r)(n) stands for applying r times the map x -> A250469(x), starting from x = n.
%F A302044 a(n) = A250245(A028234(A250246(n))).
%o A302044 (PARI)
%o A302044 \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is fast enough:
%o A302044 A302044(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n));
%o A302044 (PARI)
%o A302044 up_to = 65537;
%o A302044 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A302044 A000265(n) = (n/2^valuation(n, 2));
%o A302044 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
%o A302044 v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A302044 A078898(n) = v078898[n];
%o A302044 A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
%Y A302044 Cf. A000265, A020639, A055396, A078898, A028234, A083221, A250245, A250246, A250469, A302034, A302042, A302045.
%Y A302044 Cf. A302040 (positions of 1's).
%K A302044 nonn
%O A302044 1,6
%A A302044 _Antti Karttunen_, Mar 31 2018