This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302051 #11 Apr 03 2018 15:10:53 %S A302051 1,2,2,3,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,8,3,4,4,6,2,8,2,6,6,4, %T A302051 4,9,2,4,4,8,2,8,2,6,5,4,2,10,3,6,6,6,2,8,4,8,6,4,2,12,2,4,4,7,4,12,2, %U A302051 6,8,8,2,12,2,4,4,6,4,8,2,10,6,4,2,12,6,4,8,8,2,10,4,6,6,4,4,12,2,6,4,9,2,12,2,8,9 %N A302051 An analog of A000005 for nonstandard factorization based on the sieve of Eratosthenes (A083221). %C A302051 See A302042, A302044 and A302045 for a description of the factorization process. %H A302051 Antti Karttunen, <a href="/A302051/b302051.txt">Table of n, a(n) for n = 1..65537</a> %H A302051 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a> %F A302051 a(1) = 1, for n > 1, a(n) = (A302045(n)+1) * a(A302044(n)). %F A302051 a(n) = A000005(A250246(n)). %F A302051 a(n) = A106737(A252754(n)). %o A302051 (PARI) %o A302051 up_to = 65537; %o A302051 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; %o A302051 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639 %o A302051 v078898 = ordinal_transform(vector(up_to,n,A020639(n))); %o A302051 A078898(n) = v078898[n]; %o A302051 A000265(n) = (n/2^valuation(n, 2)); %o A302051 A001511(n) = 1+valuation(n,2); %o A302051 A302045(n) = A001511(A078898(n)); %o A302051 A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); }; %o A302051 A302051(n) = if(1==n,n,(A302045(n)+1)*A302051(A302044(n))); %o A302051 (PARI) %o A302051 \\ Or, using also some of the code from above: %o A302051 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 %o A302051 A055396(n) = if(1==n,0,primepi(A020639(n))); %o A302051 A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k))); %o A302051 A302051(n) = numdiv(A250246(n)); %Y A302051 Cf. A000005, A083221, A302042, A302044, A302045, A302052 (reduced modulo 2), A302053 (gives the positions of odd numbers). %Y A302051 Cf. also A253557, A302041, A302050, A302052, A302039, A302055 for other similar analogs. %K A302051 nonn %O A302051 1,2 %A A302051 _Antti Karttunen_, Apr 01 2018