cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302055 An arithmetic derivative analog for nonstandard factorization process based on the sieve of Eratosthenes (A083221).

This page as a plain text file.
%I A302055 #16 Apr 15 2018 15:06:01
%S A302055 0,0,1,1,4,1,5,1,12,6,7,1,16,1,9,8,32,1,21,1,24,27,13,1,44,10,15,10,
%T A302055 32,1,31,1,80,39,19,12,60,1,21,14,68,1,75,1,48,102,25,1,112,14,45,55,
%U A302055 56,1,47,75,92,57,31,1,92,1,33,16,192,16,111,1,72,150,59,1,156,1,39,20,80,18,67,1,176,81,43,1,192,95,45,71,140,1,249,147,96
%N A302055 An arithmetic derivative analog for nonstandard factorization process based on the sieve of Eratosthenes (A083221).
%C A302055 The formula is analogous to _Reinhard Zumkeller_'s May 09 2011 formula in A003415, with A032742 replaced by A302042. See the comments in the latter sequence.
%C A302055 Note that this cannot be computed just as f(n) = A003415(A250246(n)), in contrast to many other such analogs, like A253557, A302039, A302041, A302050, A302051 and A302052.
%H A302055 Antti Karttunen, <a href="/A302055/b302055.txt">Table of n, a(n) for n = 0..65537</a>
%H A302055 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a>
%F A302055 a(0) = a(1) = 0; for n > 1, a(n) = (A020639(n)*a(A302042(n))) + A302042(n).
%o A302055 (PARI)
%o A302055 up_to = 65537;
%o A302055 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A302055 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639.
%o A302055 v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A302055 A078898(n) = v078898[n];
%o A302055 A302042(n) = if((1==n)||isprime(n),1,my(c = A078898(n), p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p));
%o A302055 A302055(n) = if(n<2,0,my(k=A302042(n)); (A020639(n)*A302055(k))+k);
%Y A302055 Cf. A003415, A020639, A078898, A083221, A302042.
%K A302055 nonn
%O A302055 0,5
%A A302055 _Antti Karttunen_, Mar 31 2018