A302064 Number of n X 3 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
4, 25, 148, 884, 5296, 31760, 190528, 1143104, 6858496, 41150720, 246903808, 1481421824, 8888528896, 53331169280, 319987007488, 1919922028544, 11519532138496, 69117192765440, 414703156461568, 2488218938507264
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0. .0..1..1. .0..1..1. .0..0..1. .0..0..1. .0..0..1. .0..0..1 ..0..1..1. .0..0..0. .0..0..1. .1..1..0. .1..0..1. .0..0..0. .0..1..0 ..0..0..1. .1..0..0. .1..0..1. .0..1..1. .1..0..0. .1..0..1. .0..0..0 ..1..1..0. .1..0..1. .0..1..0. .0..1..0. .1..1..0. .0..0..1. .0..1..1 ..0..1..1. .0..1..0. .1..0..1. .1..1..1. .1..0..0. .0..1..1. .1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302069.
Formula
Empirical: a(n) = 8*a(n-1) - 12*a(n-2) for n>3.
Comments