A302065 Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
8, 81, 748, 7070, 67070, 636852, 6048836, 57457232, 545796112, 5184660760, 49250608992, 467846412016, 4444215843808, 42216967044320, 401031909830432, 3809525073635904, 36187846859821376, 343759454672598656
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0..1. .0..0..1..0. .0..0..1..0. .0..1..0..0. .0..1..1..0 ..1..0..1..0. .1..0..1..1. .1..0..1..1. .0..1..0..0. .1..1..1..1 ..1..0..1..0. .0..1..0..1. .1..0..0..1. .1..1..0..0. .1..0..0..0 ..0..1..0..1. .1..1..0..1. .1..1..1..0. .0..1..0..1. .1..1..0..0 ..1..1..0..0. .1..1..0..1. .0..0..0..1. .0..1..0..0. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302069.
Formula
Empirical: a(n) = 16*a(n-1) -76*a(n-2) +148*a(n-3) -124*a(n-4) +36*a(n-5) for n>6
Comments