A302066 Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.
16, 263, 3657, 54177, 807601, 12063625, 180330117, 2696254757, 40316943551, 602872785123, 9015038394948, 134806477346114, 2015832143687688, 30143807918373532, 450756407141792781, 6740400763324758261
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..1..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..0..1..1 ..1..1..0..1..1. .1..0..0..1..1. .1..1..1..0..0. .1..0..1..0..0 ..0..1..1..0..0. .1..0..1..0..0. .0..0..1..1..0. .1..1..0..1..0 ..1..0..1..1..0. .1..0..1..1..0. .1..0..0..0..0. .0..0..1..1..1 ..1..0..0..0..1. .1..0..0..0..1. .0..1..0..1..0. .1..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302069.
Formula
Empirical: a(n) = 32*a(n-1) -376*a(n-2) +2288*a(n-3) -8309*a(n-4) +19438*a(n-5) -30349*a(n-6) +31426*a(n-7) -20604*a(n-8) +7932*a(n-9) -1632*a(n-10) +144*a(n-11) for n>13
Comments