cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A302063 Number of n X n 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 148, 7070, 807601, 230634314, 163660519064, 287524499258589, 1255489680741501583, 13604053305283669077460, 365895359118873240818539121, 24430548564295449443919121195475, 4049114247665544928116295437330272275
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Diagonal of A302069.

Examples

			Some solutions for n=5
..0..0..0..1..0. .0..0..0..1..1. .0..0..0..1..0. .0..0..0..1..1
..1..1..1..0..1. .1..0..1..1..0. .1..1..0..0..0. .1..1..0..0..1
..0..0..1..1..0. .1..0..0..1..1. .1..1..0..0..0. .0..0..1..0..0
..1..0..0..0..1. .1..1..0..0..1. .0..1..0..0..0. .1..0..1..0..1
..1..1..1..0..0. .0..1..1..1..0. .0..1..0..1..0. .0..1..1..0..1
		

Crossrefs

Cf. A302069.

A302064 Number of n X 3 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 25, 148, 884, 5296, 31760, 190528, 1143104, 6858496, 41150720, 246903808, 1481421824, 8888528896, 53331169280, 319987007488, 1919922028544, 11519532138496, 69117192765440, 414703156461568, 2488218938507264
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Column 3 of A302069.

Examples

			Some solutions for n=5
..0..1..0. .0..1..1. .0..1..1. .0..0..1. .0..0..1. .0..0..1. .0..0..1
..0..1..1. .0..0..0. .0..0..1. .1..1..0. .1..0..1. .0..0..0. .0..1..0
..0..0..1. .1..0..0. .1..0..1. .0..1..1. .1..0..0. .1..0..1. .0..0..0
..1..1..0. .1..0..1. .0..1..0. .0..1..0. .1..1..0. .0..0..1. .0..1..1
..0..1..1. .0..1..0. .1..0..1. .1..1..1. .1..0..0. .0..1..1. .1..1..0
		

Crossrefs

Cf. A302069.

Formula

Empirical: a(n) = 8*a(n-1) - 12*a(n-2) for n>3.

A302065 Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 81, 748, 7070, 67070, 636852, 6048836, 57457232, 545796112, 5184660760, 49250608992, 467846412016, 4444215843808, 42216967044320, 401031909830432, 3809525073635904, 36187846859821376, 343759454672598656
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Column 4 of A302069.

Examples

			Some solutions for n=5
..0..1..0..1. .0..0..1..0. .0..0..1..0. .0..1..0..0. .0..1..1..0
..1..0..1..0. .1..0..1..1. .1..0..1..1. .0..1..0..0. .1..1..1..1
..1..0..1..0. .0..1..0..1. .1..0..0..1. .1..1..0..0. .1..0..0..0
..0..1..0..1. .1..1..0..1. .1..1..1..0. .0..1..0..1. .1..1..0..0
..1..1..0..0. .1..1..0..1. .0..0..0..1. .0..1..0..0. .1..1..1..1
		

Crossrefs

Cf. A302069.

Formula

Empirical: a(n) = 16*a(n-1) -76*a(n-2) +148*a(n-3) -124*a(n-4) +36*a(n-5) for n>6

A302066 Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 263, 3657, 54177, 807601, 12063625, 180330117, 2696254757, 40316943551, 602872785123, 9015038394948, 134806477346114, 2015832143687688, 30143807918373532, 450756407141792781, 6740400763324758261
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Column 5 of A302069.

Examples

			Some solutions for n=5
..0..0..0..1..0. .0..0..0..1..0. .0..0..0..0..0. .0..0..0..1..1
..1..1..0..1..1. .1..0..0..1..1. .1..1..1..0..0. .1..0..1..0..0
..0..1..1..0..0. .1..0..1..0..0. .0..0..1..1..0. .1..1..0..1..0
..1..0..1..1..0. .1..0..1..1..0. .1..0..0..0..0. .0..0..1..1..1
..1..0..0..0..1. .1..0..0..0..1. .0..1..0..1..0. .1..0..0..0..1
		

Crossrefs

Cf. A302069.

Formula

Empirical: a(n) = 32*a(n-1) -376*a(n-2) +2288*a(n-3) -8309*a(n-4) +19438*a(n-5) -30349*a(n-6) +31426*a(n-7) -20604*a(n-8) +7932*a(n-9) -1632*a(n-10) +144*a(n-11) for n>13

A302067 Number of nX6 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 855, 18108, 420121, 9825815, 230634314, 5420105343, 127431664603, 2996509042607, 70465921482502, 1657112387922219, 38969801181371093, 916443418379800057, 21551801320879128359, 506829233952227257653
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Column 6 of A302069.

Examples

			Some solutions for n=5
..0..0..1..1..0..0. .0..0..1..0..0..1. .0..0..1..0..1..1. .0..0..1..0..0..1
..0..0..1..0..1..1. .0..0..1..0..1..1. .0..0..1..0..0..1. .0..0..1..0..1..1
..0..0..1..0..1..1. .0..0..1..0..1..1. .0..1..1..0..1..0. .0..1..1..0..1..1
..0..0..1..0..0..0. .0..0..0..0..1..0. .0..0..1..0..1..0. .0..1..0..0..1..0
..0..1..0..1..1..0. .1..0..1..0..1..0. .0..1..1..0..1..0. .1..1..1..0..0..1
		

Crossrefs

Cf. A302069.

Formula

Empirical: a(n) = 64*a(n-1) -1690*a(n-2) +25482*a(n-3) -252419*a(n-4) +1780964*a(n-5) -9433881*a(n-6) +38861751*a(n-7) -127364033*a(n-8) +336753119*a(n-9) -724264377*a(n-10) +1273619361*a(n-11) -1838285081*a(n-12) +2185709769*a(n-13) -2148857927*a(n-14) +1752766341*a(n-15) -1188289983*a(n-16) +668874578*a(n-17) -311073351*a(n-18) +118346399*a(n-19) -36213453*a(n-20) +8679164*a(n-21) -1564108*a(n-22) +198432*a(n-23) -15696*a(n-24) +576*a(n-25) for n>27

A302068 Number of nX7 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 2778, 89658, 3247765, 119508742, 4418931065, 163660519064, 6065045335103, 224815724811979, 8334107796606201, 308963355935563199, 11454095498949273706, 424636110620978141873, 15742508225166053482704
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Column 7 of A302069.

Examples

			Some solutions for n=5
..0..1..0..0..1..1..0. .0..1..0..0..1..0..1. .0..1..0..0..1..1..0
..0..0..0..1..0..1..1. .0..0..0..0..1..0..1. .0..0..0..1..0..1..1
..0..1..0..0..0..0..1. .0..0..0..1..1..0..0. .0..1..0..0..1..0..0
..0..0..0..1..1..0..1. .0..1..0..1..0..1..0. .0..1..1..0..1..1..0
..0..1..0..0..0..1..0. .1..0..1..1..0..1..1. .0..1..1..0..0..0..1
		

Crossrefs

Cf. A302069.

Formula

Empirical recurrence of order 53 (see link above)

A302070 Number of 3Xn 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 148, 748, 3657, 18108, 89658, 444359, 2202106, 10912859, 54080195, 268002332, 1328125172, 6581720890, 32616691234, 161636836900, 801015249307, 3969549529089, 19671689743540, 97485967746453, 483106130247259
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Row 3 of A302069.

Examples

			Some solutions for n=5
..0..1..0..1..1. .0..0..1..0..1. .0..1..1..0..1. .0..1..0..0..0
..1..0..0..1..1. .1..0..0..1..1. .0..1..0..1..0. .0..1..1..1..1
..1..1..0..0..1. .0..1..0..0..0. .0..1..0..0..1. .1..0..0..0..0
		

Crossrefs

Cf. A302069.

Formula

Empirical: a(n) = 4*a(n-1) +4*a(n-2) +2*a(n-3) +7*a(n-4) +7*a(n-5) -4*a(n-6) -10*a(n-7) -3*a(n-8) -5*a(n-9) -11*a(n-10) +2*a(n-11) +8*a(n-12) +a(n-13) -a(n-15) for n>18

A302071 Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 884, 7070, 54177, 420121, 3247765, 25151723, 194858064, 1509933667, 11700696791, 90670424899, 702618377845, 5444692727615, 42191725016453, 326949892917866, 2533582903716510, 19633107331640883, 152139842374919901
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Row 4 of A302069.

Examples

			Some solutions for n=5
..0..1..0..1..1. .0..1..1..0..1. .0..0..1..0..0. .0..1..0..1..1
..0..1..0..1..0. .1..0..1..0..0. .1..0..0..1..0. .0..0..1..0..0
..0..1..0..0..1. .0..0..1..1..1. .0..1..0..0..1. .1..0..1..0..1
..0..0..1..0..0. .0..1..0..0..0. .1..1..1..0..1. .1..1..0..0..0
		

Crossrefs

Cf. A302069.

Formula

Empirical: a(n) = 9*a(n-1) -7*a(n-2) -29*a(n-3) +72*a(n-4) -52*a(n-5) -176*a(n-6) +353*a(n-7) -344*a(n-8) -507*a(n-9) +1488*a(n-10) -860*a(n-11) -872*a(n-12) +6458*a(n-13) +967*a(n-14) -10158*a(n-15) +2015*a(n-16) +9555*a(n-17) -22359*a(n-18) -15321*a(n-19) +31037*a(n-20) +1946*a(n-21) -35762*a(n-22) +6984*a(n-23) +54512*a(n-24) -8022*a(n-25) -4993*a(n-26) +14111*a(n-27) +19649*a(n-28) -10813*a(n-29) -13238*a(n-30) +10142*a(n-31) -41279*a(n-32) +14522*a(n-33) -20026*a(n-34) -4521*a(n-35) -2506*a(n-36) +13706*a(n-37) -2834*a(n-38) +7163*a(n-39) +1796*a(n-40) +817*a(n-41) -1442*a(n-42) +116*a(n-43) -719*a(n-44) -133*a(n-45) +120*a(n-46) -123*a(n-47) -23*a(n-48) -a(n-49) -7*a(n-50) -20*a(n-51) +10*a(n-52) +8*a(n-53) for n>58

A302072 Number of 5Xn 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 5296, 67070, 807601, 9825815, 119508742, 1452315793, 17661727848, 214818317017, 2613377675631, 31794933035645, 386831554680657, 4706379266471703, 57260098009925842, 696654234944188198
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Row 5 of A302069.

Examples

			Some solutions for n=5
..0..0..0..0..1. .0..0..0..0..0. .0..0..0..1..1. .0..0..0..1..0
..1..1..1..1..1. .1..1..1..0..1. .1..0..1..0..0. .1..1..0..1..1
..0..0..1..0..1. .0..1..1..0..0. .1..0..1..1..0. .1..0..0..1..1
..0..1..0..0..0. .0..0..1..1..0. .0..1..0..1..1. .1..1..0..1..0
..1..1..1..1..0. .1..0..1..1..1. .0..1..1..0..0. .1..0..1..1..0
		

Crossrefs

Cf. A302069.

A302073 Number of 6Xn 0..1 arrays with every element equal to 0, 1, 2 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 31760, 636852, 12063625, 230634314, 4418931065, 84488922112, 1616938426482, 30932061148349, 591839309608541, 11324992647651763, 216720956926608684, 4147396167934309138, 79369479396301029533
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2018

Keywords

Comments

Row 6 of A302069.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0
..1..1..1..0..1. .1..1..0..0..1. .1..1..1..1..0. .1..1..1..0..1
..0..1..1..0..1. .0..1..0..0..1. .0..0..0..0..0. .0..1..0..0..1
..0..0..1..0..1. .0..1..1..0..0. .1..1..0..1..1. .0..1..0..0..1
..1..0..1..0..0. .0..0..1..0..0. .1..0..0..0..1. .0..1..1..0..0
..0..0..1..0..1. .1..0..1..0..0. .1..1..0..1..0. .1..0..1..0..1
		

Crossrefs

Cf. A302069.
Showing 1-10 of 11 results. Next