cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302096 a(n) is the smallest pandigital number divisible by n, or 0 if no such pandigital number exists.

Original entry on oeis.org

1023456789, 1023456798, 1023456789, 1023457896, 1023467895, 1023456798, 1023456798, 1023457896, 1023456789, 1234567890, 1024375869, 1023457896, 1023456798, 1023456798, 1023467895, 1023457968, 1023457698, 1023456798, 1023458769, 1234567980, 1023456798, 1024375968
Offset: 1

Views

Author

Rodolfo Kurchan, May 06 2018

Keywords

Comments

Note: in this sequence, "pandigital" numbers are defined as in A050278 (i.e., with each of the ten digits 0..9 appearing exactly once).
The first 99 terms coincide with those of A061604. - Giovanni Resta, May 15 2018
From Jon E. Schoenfield, May 19 2018: (Start)
Record high values exceeding 2*10^9 begin a(10001) = 2650134987, a(20002) = 2750134986, a(27775) = 3012948675, a(40004) = 3760215984, a(44440) = 4123987560, a(50005) = 6820431975, ...
a(n)=0 for every n divisible by 100. Other than multiples of 100, the smallest values of n for which a(n)=0 are 37037 and 55550. The last nonzero term is a(9876543210) = 9876543210. (End)
There are 44021407 nonzero terms. - Michael S. Branicky, Mar 05 2025

Examples

			a(11) = 1024375869 = 11 * 93125079 because it is the smallest pandigital number that is divisible by 11;
a(100) = 0 because there is no pandigital number that is divisible by 100.
		

Crossrefs

Programs

  • Mathematica
    s = Select[FromDigits /@ Permutations[Range[0, 9]], # > 10^9 &]; Table[ SelectFirst[ s, Mod[#, n] == 0 &, 0], {n, 22}] (* Giovanni Resta, May 15 2018 *)
  • Python
    # see link for another program
    from itertools import permutations
    def a(n): return next((t for p in permutations("0123456789") if p[0] != "0" and (t:=int("".join(p)))%n == 0), 0)
    print([a(n) for n in range(1, 23)]) # Michael S. Branicky, Mar 05 2025