cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302105 G.f. A(x) satisfies: A(x) = Sum_{n>=0} (4 + x*A(x)^n)^n / 5^(n+1).

This page as a plain text file.
%I A302105 #7 Apr 06 2018 20:37:26
%S A302105 1,1,10,175,3835,95090,2551480,72360700,2139052845,65329175385,
%T A302105 2049247480265,65752776679275,2151923601749290,71691421965972905,
%U A302105 2428004656549037580,83523871228996755395,2917260885363111908770,103451501815230690971935,3726040763307222530311125,136400452641372633368206185,5080478361492407723101242440
%N A302105 G.f. A(x) satisfies: A(x) = Sum_{n>=0} (4 + x*A(x)^n)^n / 5^(n+1).
%C A302105 Compare to: G(x) = Sum_{n>=0} (4 + x*G(x)^k)^n / 5^(n+1) holds when G(x) = 1 + x*G(x)^(k+1) for fixed k.
%H A302105 Paul D. Hanna, <a href="/A302105/b302105.txt">Table of n, a(n) for n = 0..100</a>
%F A302105 G.f. A(x) satisfies:
%F A302105 (1) A(x) = Sum_{n>=0} (4 + x*A(x)^n)^n / 5^(n+1).
%F A302105 (2) A(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (5 - 4*A(x)^n)^(n+1).
%e A302105 G.f.: A(x) = 1 + x + 10*x^2 + 175*x^3 + 3835*x^4 + 95090*x^5 + 2551480*x^6 + 72360700*x^7 + 2139052845*x^8 + 65329175385*x^9 + 2049247480265*x^10 + ...
%e A302105 such that
%e A302105 A(x) = 4/5 + (4 + x*A(x))/5^2 + (4 + x*A(x)^2)^2/5^3 + (4 + x*A(x)^3)^3/5^4 + (4 + x*A(x)^4)^4/5^5 + (4 + x*A(x)^5)^5/5^6 + (4 + x*A(x)^6)^6/5^7 + ...
%e A302105 Also, due to a series identity,
%e A302105 A(x) = 1 + x*A(x)/(5 - 4*A(x))^2 + x^2*A(x)^4/(5 - 4*A(x)^2)^3 + x^3*A(x)^9/(5 - 4*A(x)^3)^4 + x^4*A(x)^16/(5 - 4*A(x)^4)^5 + x^5*A(x)^25/(5 - 4*A(x)^5)^6 + x^6*A(x)^36/(5 - 4*A(x)^6)^7 + ... + x^n * A(x)^(n^2) / (5 - 4*A(x)^n)^(n+1) + ...
%o A302105 (PARI) {a(n) = my(A=1); for(i=0, n, A = sum(m=0, n, x^m * A^(m^2) / (5 - 4*A^m + x*O(x^n))^(m+1) )); polcoeff(A, n)}
%o A302105 for(n=0,30,print1(a(n),", "))
%Y A302105 Cf. A300050, A302103, A302104.
%K A302105 nonn
%O A302105 0,3
%A A302105 _Paul D. Hanna_, Apr 05 2018