A302127 Primitive terms of A067808.
720, 1080, 1680, 1800, 2016, 2520, 3024, 3780, 3960, 4200, 4680, 5280, 5544, 6120, 6300, 6840, 7056, 9240, 9504, 9600, 10584, 10920, 11232, 12480, 12672, 13104, 13200, 13860, 14256, 14280, 15600, 16380, 17136, 19152, 19656, 20400, 20592, 21420, 23184, 23940, 24000, 25704, 26928, 28728, 29232
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A067808.
Programs
-
Maple
count:= 0: Res:= NULL: for n from 1 while count < 100 do F:= ifactors(n)[2]; if mul((t[1]^(t[2]+1)-1)^2/(t[1]^(2*t[2]+1)-1)/(t[1]-1), t = F) > 3 and andmap(s -> not(type(n/s,integer)), [Res]) then count:= count+1; Res:= Res, n; fi od: Res;
-
Mathematica
count = 0; Res = {}; For[n = 2, count < 100, n++, F = FactorInteger[n]; If[Product[{p, e} = pe; (p^(e+1)-1)^2/((p^(2e+1)-1)(p-1)), {pe, F}] > 3 && AllTrue[Res, !IntegerQ[n/#]&], count++; AppendTo[Res, n]] ]; Res (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
Comments