A302161 Number of nX6 0..1 arrays with every element equal to 0, 1 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
13, 65, 34, 109, 296, 635, 1563, 3948, 9405, 22602, 55730, 135448, 327429, 798275, 1944498, 4720205, 11478126, 27935558, 67913732, 165112453, 401615997, 976675958, 2374829337, 5775344378, 14045080684, 34154018024, 83055854601
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..0..1..0. .0..1..0..1..0..1. .0..1..1..0..1..0. .0..1..0..1..0..1 ..1..0..1..0..1..0. .0..1..0..1..1..0. .1..0..1..0..1..0. .1..1..0..1..0..0 ..1..0..1..0..1..0. .0..1..1..0..1..0. .1..0..1..0..1..1. .0..1..0..1..0..1 ..1..0..1..0..1..1. .1..0..1..0..1..0. .0..0..1..0..1..0. .0..1..0..1..0..1 ..1..0..1..0..1..0. .1..0..1..0..0..1. .1..0..1..0..1..0. .0..1..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302163.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +8*a(n-3) -5*a(n-5) -17*a(n-6) -2*a(n-7) +6*a(n-8) +10*a(n-9) +a(n-10) -a(n-11) +a(n-12) -a(n-14) -a(n-15) for n>26
Comments