This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302163 #4 Apr 02 2018 14:49:25 %S A302163 1,2,2,3,3,4,5,9,6,8,8,17,7,10,16,13,25,12,17,21,32,21,65,20,29,31,42, %T A302163 64,34,185,34,51,73,57,86,128,55,385,56,109,140,156,111,179,256,89, %U A302163 649,94,206,296,280,361,265,370,512,144,1489,156,407,603,635,621,865,527,770 %N A302163 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302163 Table starts %C A302163 ...1...2...3....5....8...13....21....34....55.....89....144.....233.....377 %C A302163 ...2...3...9...17...25...65...185...385...649...1489...3929....8609...15913 %C A302163 ...4...6...7...12...20...34....56....94...156....262....436.....730....1216 %C A302163 ...8..10..17...29...51..109...206...407...791...1584...3104....6165...12131 %C A302163 ..16..21..31...73..140..296...603..1288..2584...5456..11189...23561...48423 %C A302163 ..32..42..57..156..280..635..1247..2815..5524..12457..25230...55645..113410 %C A302163 ..64..86.111..361..621.1563..2853..7306.12963..33522..61775..157788..293072 %C A302163 .128.179.265..865.1451.3948..6870.19993.32005.100147.163475..531350..820788 %C A302163 .256.370.527.1970.3189.9405.15489.50691.75825.282597.409385.1667452.2263018 %H A302163 R. H. Hardin, <a href="/A302163/b302163.txt">Table of n, a(n) for n = 1..720</a> %F A302163 Empirical for column k: %F A302163 k=1: a(n) = 2*a(n-1) %F A302163 k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5) %F A302163 k=3: a(n) = a(n-1) +8*a(n-3) -6*a(n-4) -4*a(n-6) +4*a(n-7) for n>11 %F A302163 k=4: [order 15] for n>19 %F A302163 k=5: [order 12] for n>15 %F A302163 k=6: [order 15] for n>26 %F A302163 k=7: [order 27] for n>39 %F A302163 Empirical for row n: %F A302163 n=1: a(n) = a(n-1) +a(n-2) %F A302163 n=2: a(n) = a(n-1) +16*a(n-4) -8*a(n-5) for n>6 %F A302163 n=3: a(n) = a(n-1) +a(n-2) -a(n-3) +2*a(n-4) for n>6 %F A302163 n=4: [order 22] for n>23 %F A302163 n=5: [order 36] for n>40 %F A302163 n=6: [order 35] for n>45 %F A302163 n=7: [order 80] for n>89 %e A302163 Some solutions for n=5 k=4 %e A302163 ..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..1. .0..1..1..0 %e A302163 ..0..1..0..1. .0..1..0..1. .1..0..0..1. .0..1..0..1. .0..1..0..1 %e A302163 ..0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1 %e A302163 ..0..1..0..0. .0..1..0..1. .1..0..1..0. .0..1..1..0. .1..1..0..0 %e A302163 ..0..1..0..1. .1..0..0..1. .1..0..1..0. .1..0..1..0. .0..1..0..1 %Y A302163 Column 1 is A000079(n-1). %Y A302163 Column 2 is A240513. %Y A302163 Row 1 is A000045(n+1). %K A302163 nonn,tabl %O A302163 1,2 %A A302163 _R. H. Hardin_, Apr 02 2018