cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302180 Number of 3D walks of type aad.

Original entry on oeis.org

1, 1, 3, 7, 23, 71, 251, 883, 3305, 12505, 48895, 193755, 783355, 3205931, 13302329, 55764413, 236174933, 1008773269, 4343533967, 18834033443, 82201462251, 360883031291, 1592993944723, 7066748314147, 31493800133173, 140953938878821, 633354801073571, 2856369029213263
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.
Number of 3D walks of length n in the first octant using steps (1, 1, 0), (1, -1, 0), (1, 0, 1), (1, 0, -1) and (1, 0, 0) that start at the origin and end at (n, 0, 0). The analogous problem in 2D is given by the Motzkin numbers A001006. - Farzan Byramji, Mar 06 2021
Inverse binomial transform of A145867 (Number of 3D walks of type aae). - Mélika Tebni, Nov 05 2024

Crossrefs

Programs

  • Maple
    M := n-> add(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. iquo(n,2)): # Motzkin numbers
    A302180 := n-> add((-1)^(n-k)*binomial(n, k)*add(binomial(k, j)*M(j)*M(k-j), j=0..k), k=0..n):  seq(A302180(n), n = 0 .. 26); # Mélika Tebni, Nov 05 2024

Extensions

a(14)-a(26) from Farzan Byramji, Mar 06 2021