This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302184 #23 Apr 20 2025 04:08:41 %S A302184 1,2,7,26,108,472,2159,10194,49396,244328,1229308,6273896,32410096, %T A302184 169181664,891181607,4731912082,25302648644,136150941064,736747902236, %U A302184 4007011320808,21893702201648,120125750018656,661630546993116,3656966382542984,20278320788680912,112782556853239712 %N A302184 Number of 3D walks of type abe. %C A302184 See Dershowitz (2017) for precise definition. %H A302184 Nachum Dershowitz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Dershowitz/dersh3.html">Touchard's Drunkard</a>, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5. %F A302184 a(n) = Sum_{k=0..n} binomial(n, k)*A126120(k)*A000984(n-k). - _Mélika Tebni_, Nov 30 2024 %p A302184 a := n -> 2*add(binomial(n, k)*binomial(k, k/2)*binomial(2*(n-k), n-k)/(k+2), k = 0..n, 2): seq(a(n), n = 0..25); # _Peter Luschny_, Nov 30 2024 %o A302184 (Python) %o A302184 from math import comb as binomial %o A302184 def a(n: int): %o A302184 return sum(binomial(n, k)*binomial(k, k//2)//(k//2+1)*((k+1) %2)*binomial(2*(n-k), n-k) for k in range(n+1)) %o A302184 print([a(n) for n in range(26)]) # _Mélika Tebni_, Nov 30 2024 %Y A302184 Cf. A000108, A000984, A002212, A002896, A005572, A026375, A064037, A081671, A126120, A138547, A145847, A145867, A150500, A202814. %K A302184 nonn,walk %O A302184 0,2 %A A302184 _N. J. A. Sloane_, Apr 09 2018 %E A302184 a(12)-a(25) from _Mélika Tebni_, Nov 30 2024