This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302185 #28 Apr 20 2025 03:57:03 %S A302185 1,2,7,24,98,400,1785,7980,37674,178164,874146,4294752,21667932, %T A302185 109436184,563910633,2908233900,15235550330,79870553620,424021948350, %U A302185 2252356700880,12088746573540,64913104882080,351594254659830,1905139854213960,10399223643879420,56783986550235000 %N A302185 Number of 3D n-step walks of type acc. %C A302185 See Dershowitz (2017) for precise definition. %H A302185 Nachum Dershowitz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Dershowitz/dersh3.html">Touchard's Drunkard</a>, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5. %F A302185 From _Mélika Tebni_, Dec 06 2024: (Start) %F A302185 E.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*BesselI(1, 2*x) / x. %F A302185 a(n) = Sum_{k=0..n} binomial(n, k)*A005558(k)*A001405(n-k). %F A302185 a(2*n+1) = 2*A302182(2*n+1) = A135394(n) / (n+1). %F A302185 For n > 0, a(A000918(n)) is odd. (End) %p A302185 b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)): %p A302185 C:= n-> binomial(2*n, n)/(n+1): %p A302185 a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2): %p A302185 seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 06 2024 %p A302185 # second Maple program: %p A302185 a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1], %p A302185 (8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)* %p A302185 (80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)* %p A302185 (10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)* %p A302185 a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11))) %p A302185 end: %p A302185 seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 06 2024 %t A302185 b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]]; %t A302185 c[n_] := Binomial[2*n, n]/(n+1); %t A302185 a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}]; %t A302185 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jan 28 2025, after _Alois P. Heinz_ *) %o A302185 (Python) %o A302185 from math import comb as binomial %o A302185 def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers %o A302185 def a(n): %o A302185 return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1)) %o A302185 print([a(n) for n in range(26)]) # _Mélika Tebni_, Dec 06 2024 %Y A302185 Cf. A000108, A000984, A002212, A002896, A005572, A026375, A064037, A081671, A138547, A145847, A145867, A150500, A202814. %Y A302185 Cf. A000918, A001405, A005558, A005566, A135394, A302182. %K A302185 nonn,walk %O A302185 0,2 %A A302185 _N. J. A. Sloane_, Apr 09 2018 %E A302185 a(13)-a(25) from _Mélika Tebni_, Dec 06 2024