A302186 Number of 3D walks of type ace.
1, 3, 11, 44, 188, 842, 3911, 18692, 91412, 455540, 2306028, 11829424, 61375408, 321583108, 1699500055, 9049714852, 48513809796, 261638920412, 1418673379052, 7730011715760, 42305916178288, 232475082183544, 1282208011668988, 7096065370945168, 39394821683770960, 219341739839760912
Offset: 0
Links
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
Crossrefs
Programs
-
Python
from math import comb as binomial def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers def row(n: int) -> list[int]: return sum(binomial(n, k)*sum(binomial(k, j)*C((j+1)//2)*C(j//2)*(2*(j//2)+1) for j in range(k+1)) for k in range(n+1)) for n in range(26): print(row(n)) # Mélika Tebni, Nov 29 2024
Formula
Binomial transform of A145847. - Mélika Tebni, Nov 29 2024
Extensions
a(12)-a(25) from Mélika Tebni, Nov 29 2024
Comments