This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302191 #13 Apr 14 2018 18:10:55 %S A302191 1,-3,1,-5,-7,97,-403,3795,1683,-67403,141662,-5744835,-710829, %T A302191 124489961,-7187558877,247099181979,-43618981401,-2710990422171, %U A302191 16455095049450,-1725616801459565,2828334020055989,58332444583336295,-2708485501761494555 %N A302191 Numerators of Hurwitz inverse of primes [2,3,5,7,...]. %C A302191 In the ring of Hurwitz sequences all members have offset 0. %D A302191 Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885 %H A302191 N. J. A. Sloane, <a href="/A302189/a302189.txt">Maple programs for operations on Hurwitz sequences</a> %F A302191 E.g.f. for A302191/A302192 is 1 / Sum_{n >= 0} prime(n+1)*x^n/n!. %e A302191 1/2, -3/4, 1, -5/8, -7/2, 97/4, -403/4, 3795/16, 1683/2, -67403/4, 141662, -5744835/8, -710829/2, 124489961/2, -7187558877/8, ... %p A302191 # first load Maple commands for Hurwitz operations from link %p A302191 s:=[seq(ithprime(n),n=1..64)]; %p A302191 Hinv(s); %Y A302191 Cf. A302192, A302193. %K A302191 sign,frac %O A302191 0,2 %A A302191 _N. J. A. Sloane_ and William F. Keigher, Apr 12 2018