cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302198 Hurwitz logarithm of squares [1,4,9,16,...].

This page as a plain text file.
%I A302198 #17 Apr 11 2020 15:29:02
%S A302198 0,4,-7,36,-282,2952,-38640,606960,-11123280,232968960,-5489285760,
%T A302198 143711366400,-4138653657600,130021631308800,-4425213650457600,
%U A302198 162195036421017600,-6369481772349696000,266808316331741184000,-11874725090839683072000
%N A302198 Hurwitz logarithm of squares [1,4,9,16,...].
%C A302198 In the ring of Hurwitz sequences all members have offset 0.
%H A302198 Xing Gao and William F. Keigher, <a href="https://doi.org/10.1080/00927872.2016.1226885">Interlacing of Hurwitz series</a>, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885.
%F A302198 E.g.f. is log of Sum_{n >= 0} (n+1)^2*x^n/n!.
%p A302198 # first load Maple commands for Hurwitz operations from link in A302189.
%p A302198 s:=[seq(n^2,n=1..30)];
%p A302198 Hlog(s);
%o A302198 (Sage)
%o A302198 A = PowerSeriesRing(QQ, 'x')
%o A302198 f = A([i**2 for i in range(1,30)]).ogf_to_egf().log()
%o A302198 print(list(f.egf_to_ogf()))
%o A302198 # _F. Chapoton_, Apr 11 2020
%Y A302198 Cf. A302189.
%K A302198 sign
%O A302198 0,2
%A A302198 _N. J. A. Sloane_ and William F. Keigher, Apr 14 2018