cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302199 Hurwitz inverse of partition numbers A000041.

This page as a plain text file.
%I A302199 #10 Apr 15 2018 01:06:27
%S A302199 1,-1,0,3,-5,-17,103,55,-2680,6720,82446,-642698,-2087303,53641331,
%T A302199 -96015983,-4454066000,35131380473,323923309109,-6776856484915,
%U A302199 -3620043398324,1159030195119059,-7865002945782432,-175052008152354596,3163635176513031787
%N A302199 Hurwitz inverse of partition numbers A000041.
%C A302199 In the ring of Hurwitz sequences all members have offset 0.
%D A302199 Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
%H A302199 Seiichi Manyama, <a href="/A302199/b302199.txt">Table of n, a(n) for n = 0..482</a>
%F A302199 E.g.f. = 1 / Sum_{n >= 0} partition(n)*x^n/n!.
%p A302199 # first load Maple commands for Hurwitz operations from link in A302189.
%p A302199 with(combinat);
%p A302199 s:=[seq(numbpart,n=0..40)];
%p A302199 Hinv(s);
%Y A302199 Cf. A000041, A302189.
%K A302199 sign
%O A302199 0,4
%A A302199 _N. J. A. Sloane_ and William F. Keigher, Apr 14 2018