A302209 Number of nX5 0..1 arrays with every element equal to 0, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 34, 32, 111, 448, 1725, 6423, 24927, 96909, 373007, 1440865, 5580691, 21589993, 83526057, 323320869, 1251515211, 4844117367, 18751251811, 72587463435, 280991282231, 1087753936319, 4210898294795, 16301265698437, 63105914070197
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..1..0..0. .0..1..1..0..0. .0..0..1..1..0. .0..1..1..0..0 ..0..1..1..0..0. .1..1..0..0..1. .0..0..1..1..0. .1..1..0..0..1 ..0..1..1..0..1. .0..1..1..0..1. .1..0..1..1..0. .0..1..1..0..1 ..1..1..0..0..1. .0..1..1..0..0. .1..0..0..1..1. .1..1..0..0..0 ..1..1..0..0..0. .1..1..0..0..0. .0..0..0..1..1. .1..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302212.
Formula
Empirical: a(n) = 7*a(n-1) -16*a(n-2) +43*a(n-3) -167*a(n-4) +289*a(n-5) -491*a(n-6) +1395*a(n-7) -1918*a(n-8) +2105*a(n-9) -4845*a(n-10) +5894*a(n-11) -2484*a(n-12) +7527*a(n-13) -10198*a(n-14) -8382*a(n-15) -6549*a(n-16) +12610*a(n-17) +32961*a(n-18) +12280*a(n-19) -7213*a(n-20) -49277*a(n-21) -21675*a(n-22) -15454*a(n-23) +41277*a(n-24) +12068*a(n-25) +27412*a(n-26) -15746*a(n-27) +1598*a(n-28) -14336*a(n-29) +2718*a(n-30) -5912*a(n-31) +3644*a(n-32) -1164*a(n-33) +2304*a(n-34) -272*a(n-35) +160*a(n-36) -192*a(n-37) for n>41
Comments