A302219 Number of n X 3 0..1 arrays with every element equal to 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 14, 43, 194, 675, 2666, 9819, 37382, 140039, 528962, 1989787, 7501790, 28252719, 106464314, 401084083, 1511229542, 5693728487, 21452605794, 80826937611, 304534567726, 1147401249247, 4323099142602, 16288258059235, 61369756239670
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..1. .0..0..0 ..1..1..0. .0..1..1. .1..1..0. .1..0..1. .1..1..1. .1..1..0. .0..1..1 ..1..0..0. .1..0..1. .0..0..1. .1..1..0. .0..0..1. .0..1..1. .1..0..1 ..1..0..0. .1..0..1. .0..1..1. .0..1..0. .1..0..0. .0..0..1. .1..0..0 ..1..1..1. .0..1..1. .0..0..1. .1..0..0. .1..1..0. .1..1..0. .1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A302224.
Formula
Empirical: a(n) = 3*a(n-1) +7*a(n-2) -5*a(n-3) -34*a(n-4) -46*a(n-5) +64*a(n-6) +112*a(n-7) +60*a(n-8) -96*a(n-9) -80*a(n-10) -64*a(n-11).
Comments