This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302227 #4 Apr 03 2018 12:18:47 %S A302227 0,34,194,934,6110,38736,251254,1610569,10296766,66243864,424625879, %T A302227 2726394062,17497812841,112298621494,720825717366,4626342158809, %U A302227 29694255667486,190589162278017,1223278644711981,7851527608519228 %N A302227 Number of 4Xn 0..1 arrays with every element equal to 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302227 Row 4 of A302224. %H A302227 R. H. Hardin, <a href="/A302227/b302227.txt">Table of n, a(n) for n = 1..210</a> %F A302227 Empirical: a(n) = 2*a(n-1) +46*a(n-2) -788*a(n-4) -646*a(n-5) +6434*a(n-6) +6201*a(n-7) -28548*a(n-8) -19144*a(n-9) +59264*a(n-10) -8209*a(n-11) +97963*a(n-12) +207006*a(n-13) -1098204*a(n-14) -507314*a(n-15) +3485081*a(n-16) +276950*a(n-17) -5506599*a(n-18) +473443*a(n-19) +2482943*a(n-20) +506556*a(n-21) +8109563*a(n-22) -4109434*a(n-23) -21303483*a(n-24) +5376215*a(n-25) +28671693*a(n-26) -135719*a(n-27) -26171138*a(n-28) -6896727*a(n-29) +15548107*a(n-30) +8991124*a(n-31) -3953690*a(n-32) -5343561*a(n-33) -1641633*a(n-34) +576769*a(n-35) +1453672*a(n-36) +1139326*a(n-37) -138815*a(n-38) -702483*a(n-39) -125657*a(n-40) +244637*a(n-41) +55357*a(n-42) -68301*a(n-43) -34287*a(n-44) +3547*a(n-45) +16186*a(n-46) +4392*a(n-47) -3502*a(n-48) -1602*a(n-49) +56*a(n-50) +268*a(n-51) +140*a(n-52) -16*a(n-53) -16*a(n-54) for n>58 %e A302227 Some solutions for n=5 %e A302227 ..0..0..0..0..0. .0..1..1..1..1. .0..1..1..1..0. .0..1..1..0..0 %e A302227 ..1..1..1..1..0. .0..0..1..0..0. .0..0..1..0..1. .0..0..1..0..0 %e A302227 ..0..0..0..0..1. .1..0..1..0..0. .1..0..1..0..0. .1..0..1..0..0 %e A302227 ..0..1..1..1..1. .0..1..0..1..1. .1..1..0..0..0. .0..1..1..1..0 %Y A302227 Cf. A302224. %K A302227 nonn %O A302227 1,2 %A A302227 _R. H. Hardin_, Apr 03 2018