This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302233 #5 Mar 29 2019 15:51:20 %S A302233 1,1,0,1,-1,0,1,-1,1,0,1,-1,0,-2,0,1,-1,0,0,2,0,1,-1,0,-1,0,-3,0,1,-1, %T A302233 0,-1,2,-1,4,0,1,-1,0,-1,1,-2,1,-5,0,1,-1,0,-1,1,0,1,-1,6,0,1,-1,0,-1, %U A302233 1,-1,0,-2,1,-8,0,1,-1,0,-1,1,-1,2,-1,4,0,10,0,1,-1,0,-1,1,-1,1,-2,1,-4,0,-12,0 %N A302233 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j). %F A302233 G.f. of column k: Product_{j>=1} (1 + x^(k*j))/(1 + x^j). %F A302233 For asymptotics of column k see comment from _Vaclav Kotesovec_ in A145707. %e A302233 Square array begins: %e A302233 1, 1, 1, 1, 1, 1, ... %e A302233 0, -1, -1, -1, -1, -1, ... %e A302233 0, 1, 0, 0, 0, 0, ... %e A302233 0, -2, 0, -1, -1, -1, ... %e A302233 0, 2, 0, 2, 1, 1, ... %e A302233 0, -3, -1, -2, 0, -1, ... %t A302233 Table[Function[k, SeriesCoefficient[Product[(1 + x^(k i))/(1 + x^i), {i, 1, n}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten %t A302233 Table[Function[k, SeriesCoefficient[QPochhammer[-1, x^k]/QPochhammer[-1, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten %Y A302233 Columns k=1-10 give: A000007, A081360, A109389, A261734, A133563, A261736, A113297, A261735, A261733, A145707. %Y A302233 Main diagonal gives A081362. %Y A302233 Cf. A286653, A286656, A290307. %K A302233 sign,tabl %O A302233 0,14 %A A302233 _Ilya Gutkovskiy_, Apr 03 2018