cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302234 Expansion of Product_{k>=1} (1 - x^k)/(1 - x^prime(k)).

This page as a plain text file.
%I A302234 #5 Apr 03 2018 15:11:49
%S A302234 1,-1,0,0,-1,1,-1,1,-1,0,1,0,0,1,0,-1,1,0,0,0,0,-1,1,-1,1,-2,1,-1,0,1,
%T A302234 -1,1,-2,2,-1,-1,2,-1,-1,2,-2,2,-1,1,0,-1,1,0,1,-2,2,0,0,2,-1,0,0,1,0,
%U A302234 0,1,-2,0,-1,0,0,-2,2,-3,0,2,-2,1,-1,1,-2,1,-1,-1,1
%N A302234 Expansion of Product_{k>=1} (1 - x^k)/(1 - x^prime(k)).
%C A302234 The difference between the number of partitions of n into an even number of distinct nonprime parts and the number of partitions of n into an odd number of distinct nonprime parts.
%C A302234 Convolution of the sequences A000607 and A010815.
%H A302234 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A302234 G.f.: Product_{k>=1} (1 - x^A018252(k)).
%t A302234 nmax = 80; CoefficientList[Series[Product[(1 - x^k)/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]
%t A302234 nmax = 80; CoefficientList[Series[Product[(1 - Boole[!PrimeQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A302234 Cf. A000607, A002095, A010815, A018252, A046675, A096258, A302236.
%K A302234 sign
%O A302234 0,26
%A A302234 _Ilya Gutkovskiy_, Apr 03 2018