cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302236 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 + x^k).

This page as a plain text file.
%I A302236 #4 Apr 03 2018 15:11:58
%S A302236 1,-1,1,-1,0,0,-1,1,-1,0,0,0,0,1,-1,1,0,0,1,0,0,0,-1,1,0,-1,1,-2,1,0,
%T A302236 0,2,-1,0,0,-1,2,-1,-1,1,-2,1,0,0,0,-2,-1,2,0,0,1,-3,2,-1,1,2,-2,-1,
%U A302236 -1,1,3,0,-2,1,-2,0,3,0,0,-2,-2,5,1,1,-1,-4,1,-1,2,4,-2
%N A302236 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 + x^k).
%C A302236 The difference between the number of partitions of n into an even number of nonprime parts and the number of partitions of n into an odd number of nonprime parts.
%C A302236 Convolution of the sequences A000586 and A081362.
%H A302236 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A302236 G.f.: Product_{k>=1} 1/(1 + x^A018252(k)).
%t A302236 nmax = 80; CoefficientList[Series[Product[(1 + x^Prime[k])/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%t A302236 nmax = 80; CoefficientList[Series[Product[1/(1 + Boole[!PrimeQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A302236 Cf. A000586, A002095, A018252, A048165, A081362, A096258, A302234.
%K A302236 sign
%O A302236 0,28
%A A302236 _Ilya Gutkovskiy_, Apr 03 2018