cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302239 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).

This page as a plain text file.
%I A302239 #4 Apr 03 2018 15:12:15
%S A302239 1,2,6,16,40,96,226,512,1140,2488,5336,11270,23494,48356,98438,198338,
%T A302239 395846,783136,1536800,2992818,5786952,11114950,21213906,40247696,
%U A302239 75928804,142475644,265985628,494155176,913802164,1682338192,3084101744,5630853218,10240484332,18553818210
%N A302239 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).
%C A302239 Convolution of the sequences A001970 and A261049.
%H A302239 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A302239 G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000041(k).
%t A302239 nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A302239 Cf. A000041, A001970, A015128, A156616, A206622, A206623, A206624, A260916, A261049, A261386, A261452, A261519, A261520, A301554, A301555, A302237, A302238.
%K A302239 nonn
%O A302239 0,2
%A A302239 _Ilya Gutkovskiy_, Apr 03 2018