This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302247 #44 Jun 17 2022 12:00:03 %S A302247 1,1,1,2,1,1,1,1,2,3,1,1,1,1,1,1,1,2,2,2,3,4,1,1,1,1,1,1,1,1,1,1,1,1, %T A302247 2,2,2,2,3,3,4,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2, %U A302247 2,3,3,3,3,4,4,5,6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A302247 Irregular triangle read by rows in which row n lists all parts of all partitions of n, in nondecreasing order. %C A302247 Also due to the correspondence divisor/part row n lists the terms of the n-th row of A338156 in nondecreasing order. In other words: row n lists in nondecreasing order the divisors of the terms of the n-th row of A176206. - _Omar E. Pol_, Jun 16 2022 %H A302247 Paolo Xausa, <a href="/A302247/b302247.txt">Table of n, a(n) for n = 1..9687</a>, (rows 1..18 of triangle, flattened) %e A302247 Triangle begins: %e A302247 1; %e A302247 1,1,2; %e A302247 1,1,1,1,2,3; %e A302247 1,1,1,1,1,1,1,2,2,2,3,4; %e A302247 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5; %e A302247 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6; %e A302247 ... %e A302247 For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. There are seven 1's, three 2's, only one 3 and only one 4, so the 4th row of this triangle is [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]. %e A302247 On the other hand for n = 4 the 4th row of A176206 is [4, 3, 2, 2, 1, 1, 1] and the divisors of these terms are [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1], [1] the same as the 4th row of A338156. These divisors listed in nondecreasing order give the 4th row of this triangle. - _Omar E. Pol_, Jun 16 2022 %t A302247 nrows=10; Array[Sort[Flatten[IntegerPartitions[#]]]&,nrows] (* _Paolo Xausa_, Jun 16 2022 *) %o A302247 (PARI) row(n) = my(list = List()); forpart(p=n, for (k=1, #p, listput(list, p[k]));); vecsort(Vec(list)); \\ _Michel Marcus_, Jun 16 2022 %Y A302247 Mirror of A302246. %Y A302247 Row n has length A006128(n). %Y A302247 The sum of row n is A066186(n). %Y A302247 The number of parts k in row n is A066633(n,k). %Y A302247 The sum of all parts k in row n is A138785(n,k). %Y A302247 The number of parts >= k in row n is A181187(n,k). %Y A302247 The sum of all parts >= k in row n is A206561(n,k). %Y A302247 The number of parts <= k in row n is A210947(n,k). %Y A302247 The sum of all parts <= k in row n is A210948(n,k). %Y A302247 First differs from both A026791 and A080576 at a(17) = T(4,7). %Y A302247 Cf. A000041, A027750, A176206, A221529, A336812, A338156. %K A302247 nonn,tabf %O A302247 1,4 %A A302247 _Omar E. Pol_, Apr 05 2018