This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302250 #23 Aug 20 2023 10:49:16 %S A302250 2,3,10,347,79814832 %N A302250 The number of antichains in the lattice of set partitions of an n-element set. %C A302250 Computing terms in this sequence is analogous to Dedekind's problem which asks for the number of antichains in the Boolean algebra. %C A302250 This count includes the empty antichain consisting of no set partitions. %H A302250 Dmitry I. Ignatov, <a href="https://doi.org/10.1007/978-3-031-40960-8_6">A Note on the Number of (Maximal) Antichains in the Lattice of Set Partitions</a>. In: Ojeda-Aciego, M., Sauerwald, K., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2023. Lecture Notes in Computer Science(). Springer, Cham. %e A302250 For n = 3 the a(3) = 10 antichains are: %e A302250 {} %e A302250 {1/2/3} %e A302250 {1/23} %e A302250 {12/3} %e A302250 {13/2} %e A302250 {1/23, 12/3} %e A302250 {1/23, 13/2} %e A302250 {12/3, 13/2} %e A302250 {1/23, 12/3, 13/2} %e A302250 {123}. %e A302250 Here we have used the usual shorthand notation for set partitions where 1/23 denotes {{1}, {2,3}}. %o A302250 (Sage) %o A302250 [Posets.SetPartitions(n).antichains().cardinality() for n in range(4)] %Y A302250 Equals A302251 + 1, Cf. A000372, A007153, A003182, A014466. %K A302250 nonn,hard,more %O A302250 1,1 %A A302250 _John Machacek_, Apr 04 2018