This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302254 #18 Sep 08 2022 08:46:21 %S A302254 1,1,2,4,4,4,4,4,8,8,16,16,32,32,64,64,128,128,256,256,512,512,1024, %T A302254 1024,2048,2048,4096,4096,8192,8192,16384,16384,32768,32768,65536, %U A302254 65536,131072,131072,262144,262144,524288,524288,1048576,1048576,2097152,2097152,4194304,4194304,8388608,8388608 %N A302254 Exponent of the group of the Gaussian integers in a reduced system modulo (1+i)^n. %C A302254 For n > 0, the number of elements in the group of the Gaussian integers in a reduced system modulo (1+i)^n is 2^(n-1). %F A302254 For n > 5, a(n) = 2^(floor(n/2) - 1). %F A302254 For even n, a(n) = A227334(2^(n/2)). %e A302254 For Gaussian integer x such that (x, 1+i) = 1, x^4 - 1 = (x + 1)(x - 1)(x + i)(x - i) provides at least 7 factors of 1+i in total (and exactly 7 when x = 2+i), so a(7) = 4. %t A302254 Join[{1, 1, 2, 4, 4, 4}, Table[2^(Floor[n/2] - 1), {n, 6, 50}]] (* _Vincenzo Librandi_, Apr 04 2018 *) %o A302254 (Magma) [1,1,2,4,4,4] cat [2^(Floor(n div 2)-1): n in [6..50]]; // _Vincenzo Librandi_, Apr 04 2018 %Y A302254 Cf. A016116, A079458, A227334. %K A302254 nonn,easy %O A302254 0,3 %A A302254 _Jianing Song_, Apr 04 2018