This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302265 #4 Apr 04 2018 12:50:47 %S A302265 1,2,2,4,8,4,8,29,32,8,16,105,153,128,16,32,384,772,818,512,32,64, %T A302265 1405,3818,5922,4386,2048,64,128,5135,19191,40296,45717,23516,8192, %U A302265 128,256,18766,96004,284428,429854,353229,126162,32768,256,512,68589,481261 %N A302265 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302265 Table starts %C A302265 ...1......2.......4.........8.........16...........32............64 %C A302265 ...2......8......29.......105........384.........1405..........5135 %C A302265 ...4.....32.....153.......772.......3818........19191.........96004 %C A302265 ...8....128.....818......5922......40296.......284428.......1984001 %C A302265 ..16....512....4386.....45717.....429854......4289139......41994750 %C A302265 ..32...2048...23516....353229....4608075.....64975832.....893462062 %C A302265 ..64...8192..126162...2727755...49315068....982041385...18964765818 %C A302265 .128..32768..676988..21069318..527911860..14850510984..402597400706 %C A302265 .256.131072.3632880.162753849.5651844495.224584502616.8547940665506 %H A302265 R. H. Hardin, <a href="/A302265/b302265.txt">Table of n, a(n) for n = 1..180</a> %F A302265 Empirical for column k: %F A302265 k=1: a(n) = 2*a(n-1) %F A302265 k=2: a(n) = 4*a(n-1) %F A302265 k=3: a(n) = 6*a(n-1) -2*a(n-2) +2*a(n-3) -54*a(n-4) +16*a(n-5) for n>6 %F A302265 k=4: [order 17] for n>18 %F A302265 k=5: [order 70] for n>71 %F A302265 Empirical for row n: %F A302265 n=1: a(n) = 2*a(n-1) %F A302265 n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) %F A302265 n=3: [order 12] for n>13 %F A302265 n=4: [order 44] for n>45 %e A302265 Some solutions for n=5 k=4 %e A302265 ..0..0..1..1. .0..1..0..1. .0..1..0..1. .0..0..0..0. .0..1..1..0 %e A302265 ..0..1..1..0. .0..1..1..0. .0..1..0..0. .0..1..1..0. .1..0..1..1 %e A302265 ..1..1..0..0. .0..0..1..0. .0..1..0..0. .0..1..0..1. .1..1..0..0 %e A302265 ..0..1..1..1. .1..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..1 %e A302265 ..1..0..0..0. .0..0..0..1. .0..1..1..1. .0..0..1..0. .1..1..0..0 %Y A302265 Column 1 is A000079(n-1). %Y A302265 Column 2 is A004171(n-1). %Y A302265 Row 1 is A000079(n-1). %K A302265 nonn,tabl %O A302265 1,2 %A A302265 _R. H. Hardin_, Apr 04 2018