cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302288 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - k*x^k*A(x)).

This page as a plain text file.
%I A302288 #5 Apr 05 2018 20:37:21
%S A302288 1,1,4,14,55,217,908,3864,16894,75078,338862,1548055,7147427,33294790,
%T A302288 156305144,738753341,3512431392,16788169689,80619590577,388785776751,
%U A302288 1882063496033,9142361671588,44550166132194,217716111661799,1066792279046783,5239947708977474,25795965431819883
%N A302288 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - k*x^k*A(x)).
%e A302288 G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 55*x^4 + 217*x^5 + 908*x^6 + 3864*x^7 + 16894*x^8 + 75078*x^9 + 338862*x^10 + ...
%e A302288 G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - 2*x^2*A(x)) * (1 - 3*x^3*A(x)) * (1 - 4*x^4*A(x)) * ...).
%Y A302288 Cf. A006906, A145268, A298261, A301577, A302171, A302289.
%K A302288 nonn
%O A302288 0,3
%A A302288 _Ilya Gutkovskiy_, Apr 04 2018