cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302296 Positive numbers that can be written in exactly one way as i*j*k with i < j < 2*i.

Original entry on oeis.org

6, 15, 18, 20, 28, 35, 63, 75, 77, 78, 88, 91, 99, 100, 102, 104, 110, 114, 117, 130, 138, 143, 153, 170, 174, 175, 186, 187, 189, 190, 196, 209, 221, 222, 238, 245, 246, 247, 258, 266, 272, 282, 297, 299, 304, 318, 322, 323, 325, 351, 354, 357, 366, 368, 391, 399, 402, 425, 426, 429, 437, 438
Offset: 1

Views

Author

Robert Israel, Apr 04 2018

Keywords

Comments

Numbers n such that A301989(n)=1.

Examples

			a(5)=28 is in the sequence because 28 = 4*7*1 is the only way to write 28=i*j*k with i < j < 2*i.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    V:= Vector(N):
    for i from 1 to isqrt(N-1) do
      for j from i+1 to min(floor(N/i),2*i-1) do
        for k from 1 to floor(N/(i*j)) do
          n:= i*j*k;
          V[n]:= V[n]+1;
    od od od:
    select(t -> V[t]=1, [$1..N]);
  • Mathematica
    M = 1000;
    V = Table[0, {M}];
    For[i = 1, i <= Sqrt[M-1], i++,
      For[j = i+1, j <= Min[Floor[M/i], 2i-1], j++,
        For[k = 1, k <= Floor[M/(i j)], k++,
          n = i j k;
          V[[n]] = V[[n]]+1;
    ]]];
    Position[V, 1] // Flatten (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
  • PARI
    list(lim)=my(v=List(),u=vectorsmall(lim\=1),t); for(i=1, sqrtint(lim), for(j=i+1,min(lim\i,2*i-1), t=i*j; forstep(n=t,lim,t, u[n]++))); for(i=1,#u, if(u[i]==1, listput(v,i))); Vec(v) \\ Charles R Greathouse IV, Apr 05 2018