A302296 Positive numbers that can be written in exactly one way as i*j*k with i < j < 2*i.
6, 15, 18, 20, 28, 35, 63, 75, 77, 78, 88, 91, 99, 100, 102, 104, 110, 114, 117, 130, 138, 143, 153, 170, 174, 175, 186, 187, 189, 190, 196, 209, 221, 222, 238, 245, 246, 247, 258, 266, 272, 282, 297, 299, 304, 318, 322, 323, 325, 351, 354, 357, 366, 368, 391, 399, 402, 425, 426, 429, 437, 438
Offset: 1
Keywords
Examples
a(5)=28 is in the sequence because 28 = 4*7*1 is the only way to write 28=i*j*k with i < j < 2*i.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N V:= Vector(N): for i from 1 to isqrt(N-1) do for j from i+1 to min(floor(N/i),2*i-1) do for k from 1 to floor(N/(i*j)) do n:= i*j*k; V[n]:= V[n]+1; od od od: select(t -> V[t]=1, [$1..N]);
-
Mathematica
M = 1000; V = Table[0, {M}]; For[i = 1, i <= Sqrt[M-1], i++, For[j = i+1, j <= Min[Floor[M/i], 2i-1], j++, For[k = 1, k <= Floor[M/(i j)], k++, n = i j k; V[[n]] = V[[n]]+1; ]]]; Position[V, 1] // Flatten (* Jean-François Alcover, Apr 29 2019, after Robert Israel *)
-
PARI
list(lim)=my(v=List(),u=vectorsmall(lim\=1),t); for(i=1, sqrtint(lim), for(j=i+1,min(lim\i,2*i-1), t=i*j; forstep(n=t,lim,t, u[n]++))); for(i=1,#u, if(u[i]==1, listput(v,i))); Vec(v) \\ Charles R Greathouse IV, Apr 05 2018
Comments