This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302305 #4 Apr 05 2018 09:35:41 %S A302305 5,21,26,66,153,380,1090,3120,9130,28503,92139,306958,1051554,3668169, %T A302305 12963076,46237599,165941571,598016312,2161073292,7823738491, %U A302305 28358286582,102869586674,373350974508,1355483499654,4922288630695,17877323961313 %N A302305 Number of nX4 0..1 arrays with every element equal to 0, 1, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302305 Column 4 of A302309. %H A302305 R. H. Hardin, <a href="/A302305/b302305.txt">Table of n, a(n) for n = 1..210</a> %F A302305 Empirical: a(n) = 4*a(n-1) -a(n-2) +13*a(n-3) -39*a(n-4) -46*a(n-5) -69*a(n-6) +127*a(n-7) +351*a(n-8) +398*a(n-9) +182*a(n-10) -501*a(n-11) -1019*a(n-12) -1557*a(n-13) -1491*a(n-14) -1959*a(n-15) -1262*a(n-16) +1382*a(n-17) +5918*a(n-18) +10142*a(n-19) +9318*a(n-20) +6522*a(n-21) +3234*a(n-22) +7658*a(n-23) +7127*a(n-24) -8022*a(n-25) -34050*a(n-26) -48544*a(n-27) -31871*a(n-28) +435*a(n-29) +28903*a(n-30) +28894*a(n-31) +6166*a(n-32) -21872*a(n-33) -19757*a(n-34) +5445*a(n-35) +29560*a(n-36) +30055*a(n-37) +7892*a(n-38) -7579*a(n-39) -11238*a(n-40) -4021*a(n-41) +1118*a(n-42) +848*a(n-43) -2208*a(n-44) -2176*a(n-45) -926*a(n-46) +1360*a(n-47) +502*a(n-48) -167*a(n-49) +425*a(n-50) -101*a(n-51) -197*a(n-52) +22*a(n-53) +80*a(n-54) +6*a(n-55) +8*a(n-56) +3*a(n-57) -18*a(n-58) -a(n-59) +3*a(n-60) for n>61 %e A302305 Some solutions for n=5 %e A302305 ..0..1..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1 %e A302305 ..0..1..0..1. .0..0..0..0. .0..0..0..1. .1..0..0..1. .0..0..1..1 %e A302305 ..0..1..0..1. .0..1..1..1. .1..1..1..1. .1..0..1..0. .1..1..0..0 %e A302305 ..1..1..0..1. .0..1..0..1. .1..0..0..0. .1..0..1..0. .1..0..1..0 %e A302305 ..0..1..0..1. .0..0..0..1. .1..0..1..1. .1..1..1..0. .1..0..1..0 %Y A302305 Cf. A302309. %K A302305 nonn %O A302305 1,1 %A A302305 _R. H. Hardin_, Apr 05 2018