This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302309 #4 Apr 05 2018 09:38:35 %S A302309 1,2,2,3,3,4,5,11,6,8,8,21,13,10,16,13,31,26,33,21,32,21,113,48,66,58, %T A302309 42,64,34,363,121,194,153,153,86,128,55,813,275,663,445,380,336,179, %U A302309 256,89,1751,600,2048,1595,1271,1090,937,370,512,144,5001,1296,5790,4772,5715 %N A302309 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero. %C A302309 Table starts %C A302309 ...1...2....3....5.....8.....13......21.......34........55.........89 %C A302309 ...2...3...11...21....31....113.....363......813......1751.......5001 %C A302309 ...4...6...13...26....48....121.....275......600......1296.......2998 %C A302309 ...8..10...33...66...194....663....2048.....5790.....17761......58980 %C A302309 ..16..21...58..153...445...1595....4772....15249.....49634.....166329 %C A302309 ..32..42..153..380..1271...5715...18992....70289....276303....1198933 %C A302309 ..64..86..336.1090..3915..18990...76642...360898...1695748....9408402 %C A302309 .128.179..937.3120.12420..73663..364922..2150420..13123505...95790405 %C A302309 .256.370.2449.9130.42897.312122.1991487.15392485.124691962.1235540899 %H A302309 R. H. Hardin, <a href="/A302309/b302309.txt">Table of n, a(n) for n = 1..220</a> %F A302309 Empirical for column k: %F A302309 k=1: a(n) = 2*a(n-1) %F A302309 k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5) %F A302309 k=3: [order 13] for n>16 %F A302309 k=4: [order 60] for n>61 %F A302309 Empirical for row n: %F A302309 n=1: a(n) = a(n-1) +a(n-2) %F A302309 n=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) +12*a(n-4) -16*a(n-5) for n>6 %F A302309 n=3: [order 15] for n>16 %F A302309 n=4: [order 61] for n>64 %e A302309 Some solutions for n=5 k=4 %e A302309 ..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1 %e A302309 ..0..1..0..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..1 %e A302309 ..0..1..0..1. .0..1..0..1. .0..0..0..0. .1..0..0..1. .1..1..0..0 %e A302309 ..0..1..0..1. .0..1..0..1. .1..1..1..0. .1..0..1..0. .0..1..0..1 %e A302309 ..0..1..1..1. .0..1..1..1. .1..0..1..0. .1..0..1..0. .0..1..0..1 %Y A302309 Column 1 is A000079(n-1). %Y A302309 Column 2 is A240513. %Y A302309 Row 1 is A000045(n+1). %K A302309 nonn,tabl %O A302309 1,2 %A A302309 _R. H. Hardin_, Apr 05 2018