This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302330 #20 Jul 09 2022 21:48:22 %S A302330 1,97,9505,931393,91267009,8943235489,876345810913,85872946233985, %T A302330 8414672385119617,824552020795488481,80797683365572751521, %U A302330 7917348417805334160577,775819347261557174985025,76022378683214797814371873,7449417291607788628633458529 %N A302330 a(0)=1, a(1)=97; for n>1, a(n) = 98*a(n-1) - a(n-2). %H A302330 Colin Barker, <a href="/A302330/b302330.txt">Table of n, a(n) for n = 0..500</a> %H A302330 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A302330 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (98,-1). %F A302330 G.f.: (1 - x)/(1 - 98*x + x^2). %F A302330 a(n) = a(-1-n). %F A302330 a(n) = cosh((2*n + 1)*arccosh(5))/5. %F A302330 a(n) = ((5 + 2*sqrt(6))^(2*n + 1) + 1/(5 + 2*sqrt(6))^(2*n + 1))/10. %F A302330 a(n) = (1/5)*T(2*n+1, 5), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Jul 08 2022 %t A302330 LinearRecurrence[{98, -1}, {1, 97}, 20] %o A302330 (PARI) x='x+O('x^99); Vec((1-x)/(1-98*x+x^2)) \\ _Altug Alkan_, Apr 06 2018 %Y A302330 Fifth row of the array A188646. %Y A302330 First bisection of A041275, A042151. %Y A302330 Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329. %K A302330 nonn,easy %O A302330 0,2 %A A302330 _Bruno Berselli_, Apr 05 2018