cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302336 Linear coefficient (in absolute value) of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1.

This page as a plain text file.
%I A302336 #23 Feb 10 2022 08:04:43
%S A302336 0,2,6,28,140,740,4056,22904,132344,778832,4652404,28140536,172021360,
%T A302336 1061153560,6597813620,41307119692,260198053200,1647958588568,
%U A302336 10488324116052,67046234983840,430300354820176,2771678138269600,17912347088664868,116113406138798112
%N A302336 Linear coefficient (in absolute value) of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1.
%H A302336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>
%H A302336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>
%F A302336 a(n) = 2*A006772(n). - _Andrey Zabolotskiy_, Nov 09 2018
%e A302336 Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by:
%e A302336   p(1,n) =      0,
%e A302336   p(2,n) =      1 -      2*n +       n^2,
%e A302336   p(3,n) =      4 -      6*n +     2*n^2,
%e A302336   p(4,n) =     26 -     28*n +     7*n^2,
%e A302336   p(5,n) =    164 -    140*n +    28*n^2,
%e A302336   p(6,n) =   1046 -    740*n +   124*n^2,
%e A302336   p(7,n) =   6672 -   4056*n +   588*n^2,
%e A302336   p(8,n) =  42790 -  22904*n +  2938*n^2,
%e A302336   p(9,n) = 275888 - 132344*n + 15268*n^2,
%e A302336   ...
%e A302336 The linear coefficients give a(n), so the first few are 0, 2, 6, 28, 140, .... - _Eric W. Weisstein_, Apr 05 2018
%Y A302336 Cf. A302335 (constant coefficients).
%Y A302336 Cf. A002931 (quadratic coefficients).
%Y A302336 Cf. A006772, A302337.
%K A302336 nonn
%O A302336 1,2
%A A302336 _Eric W. Weisstein_, Apr 05 2018
%E A302336 Terms a(12) and beyond added using data from A006772 by _Andrey Zabolotskiy_, Feb 10 2022