This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302336 #23 Feb 10 2022 08:04:43 %S A302336 0,2,6,28,140,740,4056,22904,132344,778832,4652404,28140536,172021360, %T A302336 1061153560,6597813620,41307119692,260198053200,1647958588568, %U A302336 10488324116052,67046234983840,430300354820176,2771678138269600,17912347088664868,116113406138798112 %N A302336 Linear coefficient (in absolute value) of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1. %H A302336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A302336 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %F A302336 a(n) = 2*A006772(n). - _Andrey Zabolotskiy_, Nov 09 2018 %e A302336 Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by: %e A302336 p(1,n) = 0, %e A302336 p(2,n) = 1 - 2*n + n^2, %e A302336 p(3,n) = 4 - 6*n + 2*n^2, %e A302336 p(4,n) = 26 - 28*n + 7*n^2, %e A302336 p(5,n) = 164 - 140*n + 28*n^2, %e A302336 p(6,n) = 1046 - 740*n + 124*n^2, %e A302336 p(7,n) = 6672 - 4056*n + 588*n^2, %e A302336 p(8,n) = 42790 - 22904*n + 2938*n^2, %e A302336 p(9,n) = 275888 - 132344*n + 15268*n^2, %e A302336 ... %e A302336 The linear coefficients give a(n), so the first few are 0, 2, 6, 28, 140, .... - _Eric W. Weisstein_, Apr 05 2018 %Y A302336 Cf. A302335 (constant coefficients). %Y A302336 Cf. A002931 (quadratic coefficients). %Y A302336 Cf. A006772, A302337. %K A302336 nonn %O A302336 1,2 %A A302336 _Eric W. Weisstein_, Apr 05 2018 %E A302336 Terms a(12) and beyond added using data from A006772 by _Andrey Zabolotskiy_, Feb 10 2022