cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302343 Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).

This page as a plain text file.
%I A302343 #14 Sep 06 2018 09:56:51
%S A302343 1,2,6,79,158,474,3318,142674
%N A302343 Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).
%C A302343 Also, integers n such that B(n)*n == 79 (mod n), where B(n) is the n-th Bernoulli number.
%C A302343 Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -79 (mod n).
%C A302343 Although this sequence is finite, the prime 79 does not belong to A302345.
%H A302343 M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:<a href="http://doi.org/10.1016/j.dam.2018.05.022">10.1016/j.dam.2018.05.022</a> arXiv:<a href="http://arxiv.org/abs/1602.02407">1602.02407</a> [math.NT]
%Y A302343 Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), this sequence (m=79), A302344 (m=193).
%Y A302343 Cf. A302345.
%K A302343 nonn,full,fini
%O A302343 1,2
%A A302343 _Max Alekseyev_, Apr 05 2018