This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302344 #11 Sep 06 2018 09:57:15 %S A302344 1,2,6,193,386,1158,8106,348558 %N A302344 Solutions to the congruence 1^n + 2^n + ... + n^n == 193 (mod n). %C A302344 Also, integers n such that B(n)*n == 193 (mod n), where B(n) is the n-th Bernoulli number. %C A302344 Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -193 (mod n). %C A302344 Although this sequence is finite, the prime 193 does not belong to A302345. %H A302344 M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:<a href="http://doi.org/10.1016/j.dam.2018.05.022">10.1016/j.dam.2018.05.022</a> arXiv:<a href="http://arxiv.org/abs/1602.02407">1602.02407</a> [math.NT] %Y A302344 Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), this sequence (m=193). %Y A302344 Cf. A302345. %K A302344 nonn,fini,full %O A302344 1,2 %A A302344 _Max Alekseyev_, Apr 05 2018