A302367 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 31, 3, 16, 1, 72, 20, 109, 6, 32, 1, 168, 154, 77, 397, 10, 64, 1, 496, 284, 918, 209, 1430, 21, 128, 1, 1296, 1109, 3125, 6580, 774, 5110, 42, 256, 1, 3616, 3472, 21831, 26458, 49293, 3143, 18395, 86, 512, 1, 9760, 12763, 125193
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..0. .0..1..1..0. .0..0..1..0. .0..0..1..1. .0..1..1..0 ..1..1..1..1. .0..1..1..0. .0..0..1..0. .0..0..1..1. .1..1..1..1 ..0..1..0..0. .1..1..1..1. .0..1..1..1. .0..1..1..0. .1..1..0..0 ..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .1..1..0..0 ..0..1..0..0. .0..0..0..1. .1..0..0..1. .0..0..1..1. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 12]
k=4: [order 50] for n>53
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 16] for n>18
n=4: [order 63] for n>66
Comments