cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302387 a(n) is least number k >= 3 such that (k^(2^n) + (k-2)^(2^n))/2 is prime.

This page as a plain text file.
%I A302387 #26 May 08 2022 08:43:46
%S A302387 3,3,3,5,3,3,3,179,169,935,663,8723,1481,2035,10199,18203,36395
%N A302387 a(n) is least number k >= 3 such that (k^(2^n) + (k-2)^(2^n))/2 is prime.
%H A302387 Henri Lifchitz & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=%2836395%5E65536%2B36393%5E65536%29%2F2&amp;action=Search">(36395^65536+36393^65536)/2</a>, a(16).
%e A302387 a(10)=663 corresponds to the prime (663^1024 + 661^1024)/2.
%t A302387 lst = {};  For[n=0, n<=14, n++, k=3;  While[! PrimeQ[(k^(2^n) + (k-2)^(2^n))/2], k++];  AppendTo[lst, k]];  lst (* _Robert Price_, Apr 29 2018 *)
%o A302387 (PARI) for(n=0,20,forstep(k=3,+oo,2,if(ispseudoprime((k^(2^n)+(k-2)^(2^n))/2),print1(k,", ");break())))
%Y A302387 Cf. A253633, A291944, A301738.
%K A302387 nonn,hard,more
%O A302387 0,1
%A A302387 _Jeppe Stig Nielsen_, Apr 06 2018
%E A302387 a(15) from _Robert Price_, May 28 2018
%E A302387 a(16) from _Kellen Shenton_, Apr 14 2022