cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302434 Number of primes of the form b^2 + 2 for b <= 10^n.

This page as a plain text file.
%I A302434 #36 Sep 14 2018 04:28:51
%S A302434 4,12,69,447,3423,27869,236985,2054022,18127693,162237123
%N A302434 Number of primes of the form b^2 + 2 for b <= 10^n.
%C A302434 From _Jacques Tramu_, Sep 13 2018: (Start)
%C A302434 Table C(i) = a(i)/(n*log(n)), with n = 10^i:
%C A302434 a(1)  =         4     C(1)  = 0.92103404
%C A302434 a(2)  =        12     C(2)  = 0.55262042
%C A302434 a(3)  =        69     C(3)  = 0.47663511
%C A302434 a(4)  =       447     C(4)  = 0.41170221
%C A302434 a(5)  =      3423     C(5)  = 0.39408744
%C A302434 a(6)  =     27869     C(6)  = 0.38502446
%C A302434 a(7)  =    236985     C(7)  = 0.38197469
%C A302434 a(8)  =   2054022     C(8)  = 0.37836484
%C A302434 a(9)  =  18127693     C(9)  = 0.37566500
%C A302434 a(10) = 162237123     C(10) = 0.37356478
%C A302434 (End)
%e A302434 a(1) = 4 because there are 4 primes of the form b^2+2 for b <= 10: 2, 3, 11 and 83.
%o A302434 (PARI) {a(n) = sum(k=0, 10^n, isprime(k^2+2))}
%Y A302434 Number of primes of the form b^2+m for b <= 10^n: A302443 (m=-3), A302442 (m=-2), A206709 (m=1), this sequence (m=2), A302435 (m=3).
%Y A302434 Cf. A056899.
%K A302434 nonn,more
%O A302434 1,1
%A A302434 _Seiichi Manyama_, Apr 07 2018
%E A302434 a(10) from _Jacques Tramu_, Sep 13 2018