This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302442 #32 May 26 2021 08:44:42 %S A302442 5,26,157,1153,8888,72928,615643,5328644,47034083,420950239 %N A302442 Number of primes of the form b^2-2 for b <= 10^n. %C A302442 From _Jacques Tramu_, Sep 13 2018: (Start) %C A302442 Table C(i) = a(i)/pi(10^i) = a(i)/A000720(10^i) %C A302442 a(1) = 5 C(1) = 1.25000000 %C A302442 a(2) = 26 C(2) = 1.04000000 %C A302442 a(3) = 157 C(3) = 0.93452381 %C A302442 a(4) = 1153 C(4) = 0.93816111 %C A302442 a(5) = 8888 C(5) = 0.92660550 %C A302442 a(6) = 72928 C(6) = 0.92904278 %C A302442 a(7) = 615643 C(7) = 0.92636541 %C A302442 a(8) = 5328644 C(8) = 0.92487818 %C A302442 a(9) = 47034083 C(9) = 0.92500224 %C A302442 a(10) = 420950239 C(10) = 0.92505860 %C A302442 (End) %e A302442 a(1) = 5 because there are 5 primes of the form b^2-2 for b <= 10 : 2, 7, 23, 47 and 79. %o A302442 (PARI) {a(n) = sum(k=0, 10^n, isprime(k^2-2))} %o A302442 (Python) %o A302442 from sympy import isprime %o A302442 def aupton(terms): %o A302442 s, alst = 0, [] %o A302442 for n in range(1, terms+1): %o A302442 s += sum(isprime(b**2-2) for b in range(10**(n-1), 10**n)) %o A302442 alst.append(s) %o A302442 return alst %o A302442 print(aupton(6)) # _Michael S. Branicky_, May 26 2021 %Y A302442 Number of primes of the form b^2+m for b <= 10^n: A302443 (m=-3), this sequence (m=-2), A206709 (m=1), A302434 (m=2), A302435 (m=3). %Y A302442 Cf. A028871. %K A302442 nonn,more %O A302442 1,1 %A A302442 _Seiichi Manyama_, Apr 08 2018 %E A302442 a(10) from _Jacques Tramu_, Sep 14 2018