This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302450 #6 Apr 09 2018 22:33:27 %S A302450 1,1,29,182,1084,6593,38878,215937,1169023,6165895,31737691,159687840, %T A302450 787536537,3813036605,18150405546,85041775660,392633910788, %U A302450 1787993210106,8037704764044,35695268298904,156708949403719,680526030379206,2924839092347883,12447506657030287 %N A302450 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(2*k^2-1)). %C A302450 Euler transform of A002593. %H A302450 M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A302450 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A302450 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A302450 G.f.: Product_{k>=1} 1/(1 - x^k)^A002593(k). %F A302450 a(n) ~ exp(2^(5/3) * 3^(2/3) * Pi * n^(5/6) / (5 * 7^(1/6)) - Pi * sqrt(7*n) / 60 - 7^(7/6) * Pi * n^(1/6) / (1600 * 6^(2/3)) + Zeta(3) / (4*Pi^2) + 3*Zeta(5) / (2*Pi^4)) / (6^(2/3) * 7^(1/12) * n^(7/12)). - _Vaclav Kotesovec_, Apr 08 2018 %t A302450 nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (2 k^2 - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A302450 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^3 (2 d^2 - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 23}] %Y A302450 Cf. A002593, A023872, A287090, A302449. %K A302450 nonn %O A302450 0,3 %A A302450 _Ilya Gutkovskiy_, Apr 08 2018