This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302452 #4 Apr 09 2018 22:33:41 %S A302452 1,2,33,2160,368145,130426016,83303826249,87104014381056, %T A302452 139088689115885505,321859857651846029824,1036109938469605247521009, %U A302452 4490275483028481600517832704,25503692273369769781221175069521,185636732310716855091866841134243840,1699077450890747555020338066545506541145 %N A302452 a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sinh(x). %C A302452 a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. sin(x) (absolute values). %H A302452 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %e A302452 The initial coefficients of successive iterations of e.g.f. A(x) = sinh(x) (odd powers only) are as follows: %e A302452 n = 1: (1), 1, 1, 1, 1, ... e.g.f. A(x) %e A302452 n = 2: 1, (2), 12, 128, 1872, ... e.g.f. A(A(x)) %e A302452 n = 3: 1, 3, (33), 731, 25857, ... e.g.f. A(A(A(x))) %e A302452 n = 4: 1, 4, 64, (2160) 121600, ... e.g.f. A(A(A(A(x)))) %e A302452 n = 5: 1, 5, 105, 4765, (368145), ... e.g.f. A(A(A(A(A(x))))) %e A302452 ... %e A302452 More explicitly, the successive iterations of e.g.f. A(x) = sinh(x) begin: %e A302452 sinh(x) = x/1! + x^3/3! + x^5/5! + x^7/7! + x^9/9! + ... %e A302452 sinh(sinh(x)) = x/1! + 2*x^3/3! + 12*x^5/5! + 128*x^7/7! + 1872*x^9/9! + ... %e A302452 sinh(sinh(sinh(x))) = x/1! + 3*x^3/3! + 33*x^5/5! + 731*x^7/7! + 25857*x^9/9! + ... %e A302452 sinh(sinh(sinh(sinh(x)))) = x/1! + 4*x^3/3! + 64*x^5/5! + 2160*x^7/7! + 121600*x^9/9! + ... %e A302452 sinh(sinh(sinh(sinh(sinh(x))))) = x/1! + 5*x^3/3! + 105*x^5/5! + 4765*x^7/7! + 368145*x^9/9! + ... %t A302452 Table[(2 n - 1)! SeriesCoefficient[Nest[Function[x, Sinh[x]], x, n], {x, 0, 2 n - 1}], {n, 15}] %Y A302452 Cf. A003712, A003715. %K A302452 nonn %O A302452 1,2 %A A302452 _Ilya Gutkovskiy_, Apr 08 2018