This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A302488 #63 Aug 26 2025 04:51:15 %S A302488 0,1,2,3,6,9,12,15,20,25,30,35,42,49,56,63,72,81,90,99,110,121,132, %T A302488 143,156,169,182,195,210,225,240,255,272,289,306,323,342,361,380,399, %U A302488 420,441,462,483,506,529,552,575,600,625,650,675,702,729,756,783,812,841,870,899,930 %N A302488 Total domination number of the n X n grid graph. %C A302488 Extended to a(0) and a(1) using the formula/recurrence. The total domination number of the 1 X 1 grid graph is undefined. %H A302488 Andrew Howroyd, <a href="/A302488/b302488.txt">Table of n, a(n) for n = 0..1000</a> %H A302488 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>. %H A302488 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotalDominationNumber.html">Total Domination Number</a>. %H A302488 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1). %F A302488 a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8. %F A302488 a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6). %F A302488 G.f.: x*(1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)). %F A302488 a(4*m + r) = (2*m + 1)*(2*m + r) for 0 <= r < 4. - _Charles Kusniec_, Aug 16 2025 %F A302488 From _Amiram Eldar_, Aug 26 2025: (Start) %F A302488 Sum_{n>=1} 1/a(n) = Pi^2/8 + 3/2. %F A302488 Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/8 - 1/2. (End) %t A302488 Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 0, 20}] %t A302488 LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 1, 2, 3, 6, 9}, 20] %t A302488 CoefficientList[Series[x (-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x] %o A302488 (PARI) for(n=0,30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ _G. C. Greubel_, Apr 09 2018 %o A302488 (PARI) a(n)=my(m=n\4); (2*m+1)*(2*m + n%4) \\ _Andrew Howroyd_, Aug 17 2025 %o A302488 (Magma) R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [0..30]]; // _G. C. Greubel_, Apr 09 2018 %Y A302488 Main diagonal of A300358. %Y A302488 The four quadrasections are A002943, A016754, A002939(n+1), A000466(n+1). %Y A302488 Bisections are A002378 and A085046. %Y A302488 Cf. A303142. %K A302488 nonn,easy,changed %O A302488 0,3 %A A302488 _Eric W. Weisstein_, Apr 08 2018 %E A302488 a(0)=0 prepended and offset corrected by _Andrew Howroyd_, Aug 17 2025